Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Experimental results for covalent glasses have highlighted the existence of a self-organized phase due to the tendency of glass networks to minimize internal stress. Recently, we have shown that an equilibrated self-organized two-dimensional lattice-based model also possesses an intermediate phase in which a percolating rigid cluster exists with a probability between zero and one, depending on the average coordination of the network. In this paper, we study the properties of this intermediate phase in more detail. We find that microscopic perturbations, such as the addition or removal of a single bond, can affect the rigidity of macroscopic regions of the network, in particular, creating or destroying percolation. This, together with a power-law distribution of rigid cluster sizes, suggests that the system is maintained in a critical state on the rigid-floppy boundary throughout the intermediate phase, a behavior similar to self-organized criticality, but, remarkably, in a thermodynamically equilibrated state. The distinction between percolating and nonpercolating networks appears physically meaningless, even though the percolating cluster, when it exists, takes up a finite fraction of the network. We point out both similarities and differences between the intermediate phase and the critical point of ordinary percolation models without self-organization. Our results are consistent with an interpretation of recent experiments on the pressure dependence of Raman frequencies in chalcogenide glasses in terms of network homogeneity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.75.056108 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!