Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The heme-containing respiratory protein, myoglobin (Mb), best known for oxygen storage, can exhibit peroxidase-like activity under conditions of oxidative stress. Under such circumstances, the initially formed ferric state can react with H2O2 (or other peroxides) to generate a long-lived ferryl [Fe(IV)=O] Compound II (Cpd II) heme intermediate that is capable of oxidizing a variety of biomolecules. In this study, the ability of Mb Cpd II to catalyze the oxidation of carcinogenic halophenols is demonstrated. Specifically, 2,4,6-trichlorophenol (TCP) is converted to 2,6-dichloro-1,4-benzoquinone in a H2O2-dependent process. The fact that Mb Cpd II is an active oxidant in halophenol dehalogenation is consistent with a traditional peroxidase order of addition of H2O2 followed by TCP. With 4-chlorophenol, a dimerized product is formed, consistent with a mechanism involving generation of a reactive phenoxy radical intermediate by an electron transfer process. The radical nature of this process may be physiologically relevant since recent studies have revealed that phenoxy radicals and electrophilic quinones, specifically of the type described herein, covalently bind to DNA [Dai, J., Sloat, A. L., Wright, M. W., and Manderville, R. A. (2005) Chem. Res. Toxicol. 18, 771-779]. Thus, the stability of Mb Cpd II and its ability to oxidize TCP may explain why such compounds are carcinogenic. Furthermore, the initial rate of dehalogenation catalyzed by Mb Cpd II is nearly comparable to that of the same reaction carried out by turnover of the ferric state, demonstrating the potential physiological danger of this long-lived, high-valent intermediate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi700684u | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!