Versatile and practical macrocyclic reagent with multiple hydrogen-bonding sites for chiral discrimination in NMR.

J Am Chem Soc

Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan.

Published: August 2007

Bifunctional macrocycles 1-4 and diamide 5 were designed and synthesized. NMR studies demonstrated that, among them, receptor 1 functions as the best chiral solvating agent (shift reagent), which is effective for a wide range of chiral compounds having a carboxylic acid, oxazolidinone, carbonate, lactone, alcohol, sulfoxide, sulfoximine, sulfinamide, isocyanate, or epoxide functionality. The addition of only 5 mol % (69 microg, 0.15 mM) of 1 splits the enantiomeric signals of sulfoxide 13. The excellent performance of 1 as a chiral solvating agent, such as versatility, signal sharpness, high splitting ability, high sensitivity, wide detection window, and synthetic accessibility, is reported. NMR studies revealed that the principal binding site of 1 is the two amide NH groups of the lower segment and that the additional binding site is the pyridyl nitrogen. The V-shaped arrangement of the two 2,6-diacylaminopyridine moieties as constructed in 1 was found to be much more effective for binding a variety of compounds than the parallel alignment of the two binding motifs as constructed in 4. The NO2 group in 1 enhanced not only the binding ability but also the degree of enantioselectivity. Unexpectedly, the comparisons between 1 and 3 enabled us to find the importance of the relative orientation of the binaphthyl moiety; the orthogonal disposition of the binaphthyl moiety in 1 most effectively brings about the differential ring-current effect on the chiral guest molecule bound, which leads to the high degree of chiral discrimination in NMR.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja073476sDOI Listing

Publication Analysis

Top Keywords

chiral discrimination
8
discrimination nmr
8
nmr studies
8
chiral solvating
8
solvating agent
8
binding site
8
binaphthyl moiety
8
chiral
6
binding
5
versatile practical
4

Similar Publications

D-Histidine modulated chiral metal-organic frameworks for discriminating 3,4-Dihydroxyphenylalanine enantiomers based on a chemiluminescence quenching mode.

Anal Chim Acta

February 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China. Electronic address:

Background: Drug enantiomers often display distinguishable or even opposite pharmacological and toxicologic activities. Therefore it is of great necessity to discriminate enantiomers for guaranteeing safetyness and effectiveness of chiral drugs. Facile chiral discrimination has long been a noticeable challenge because of the minimal differences in physicochemical properties of enantiomers.

View Article and Find Full Text PDF

Homochiral layered indium phosphonates: solvent modulation of morphology and chiral discrimination adsorption.

Dalton Trans

January 2025

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.

Assembling chiral coordination polymers into nano/microflower structures may improve their performance in applications such as chiral recognition and separation. In this study, we chose a chiral metal phosphonate system, , In(NO)/-, -pempH [pempH = (1-phenylethylamino)methylphosphonic acid], and carried out systematic work on the self-assembly of this system in different alcohol/HO mixed solvents under solvothermal conditions. Enantiomeric compounds -, -[In(pempH)(μ-OH)(HO)](NO) (R-, S-1) were obtained showing dense layered structures, but their morphologies varied with alcohol solvent.

View Article and Find Full Text PDF

Chiral discrimination is an indispensable tool that has pivotal importance in the assignment of absolute configuration and determination of enantiomeric excess in chiral compounds. A series of enantiomerically pure -1,2-diaminocyclohexane (-DACH)-derived benzamides were first synthesized by simple chemical steps, and 14 variated derivatives have been assessed as NMR chiral solvating agents (CSAs) for discrimination of the signals of mandelic acid (MA) in H NMR analysis. The highly efficient chiral recognition of CSA on different substrates, including MAs, carboxylic acids, amino acid derivatives, and phosphoric acids (32 examples), was expanded via H, F, and P NMR spectroscopy.

View Article and Find Full Text PDF

A Chiral Sensing Platform Based on a Starfish-Shaped AuCu Alloy for Chiral Analysis.

Anal Chem

January 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.

Designing alloys with intrinsic chirality for chiral analysis is an interesting subject, since most alloys are achiral. Here, a starfish-shaped AuCu alloy is facilely prepared through simultaneous reduction of chloroauric acid (HAuCl) and copper chloride (CuCl) by l-ascorbic acid (l-AA). The resultant AuCu alloy exhibits fascinating chirality due to the chiral lattice distortion generated in the alloy.

View Article and Find Full Text PDF

Exploring the Chiral Match-Mismatch Effect in the Chiral Discrimination of Nitriles.

Anal Chem

January 2025

Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.

This study tackles the challenge of enantiodifferentiation of nitrile compounds, which is typically difficult to resolve using nuclear magnetic resonance (NMR) due to the significant distance between the chiral center and the nitrogen atom involved in molecular interactions. We have developed novel chiral F-labeled probes, each featuring two chiral centers, to exploit the "match-mismatch" effect, thereby enhancing enantiodiscrimination. This strategy effectively differentiates chiral analytes with quaternary chiral carbon centers as well as those with similar substituents at the chiral center.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!