Oxygenated 7-methyl-5,6,7,8,9,14-hexahydrodibenz[d,g]azecines are potent dopamine receptor antagonists, preferentially at D1/D5. We synthesized the hydroxylated, methoxylated, and chlorinated 11-membered and 12-membered homologues of these 10-membered heterocycles. Their affinities for the human cloned D1-D5 receptors (radioligand binding) and functionalities (calcium assay) were measured. Enlarging the dibenzazecines to the corresponding dibenzazacycloundecenes and dibenzazacyclododecenes generally maintains the high antagonistic affinity for D1/D5 but also leads to a compound with a clozapine-like binding profile due to additional affinity for D4.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm070388+DOI Listing

Publication Analysis

Top Keywords

12-membered homologues
8
d1-d5 receptors
8
dopamine/serotonin receptor
4
receptor ligands
4
ligands 161
4
161 expanding
4
expanding dibenz[dg]azecines
4
dibenz[dg]azecines 11-
4
11- 12-membered
4
homologues interaction
4

Similar Publications

The phytotoxic fungal polyketides lasiodiplodin and resorcylide inhibit human blood coagulation factor XIIIa, mineralocorticoid receptors, and prostaglandin biosynthesis. These secondary metabolites belong to the 12-membered resorcylic acid lactone (RAL12) subclass of the benzenediol lactone (BDL) family. Identification of genomic loci for the biosynthesis of lasiodiplodin from Lasiodiplodia theobromae and resorcylide from Acremonium zeae revealed collaborating iterative polyketide synthase (iPKS) pairs whose efficient heterologous expression in Saccharomyces cerevisiae provided a convenient access to the RAL12 scaffolds desmethyl-lasiodiplodin and trans-resorcylide, respectively.

View Article and Find Full Text PDF

Oxygenated 7-methyl-5,6,7,8,9,14-hexahydrodibenz[d,g]azecines are potent dopamine receptor antagonists, preferentially at D1/D5. We synthesized the hydroxylated, methoxylated, and chlorinated 11-membered and 12-membered homologues of these 10-membered heterocycles. Their affinities for the human cloned D1-D5 receptors (radioligand binding) and functionalities (calcium assay) were measured.

View Article and Find Full Text PDF

Characterization of tylM3/tylM2 and mydC/mycB pairs required for efficient glycosyltransfer in macrolide antibiotic biosynthesis.

J Am Chem Soc

December 2004

Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA.

The heterologous expression of tylM3 and mydC, two homologous genes of previously unknown function, along with genes encoding their respective partner glycosyltransferases, tylM2 and mycB, and the necessary sugar biosynthesis genes significantly enhances the glycosyltransferase activity in the engineered Streptomyces venezuelae host in which the native glycosyltransferase, desVII, has been inactivated. Both glycosyltransferases accept the endogenous 12-membered macrolide, 10-deoxymethynolide, or the exogenously fed 16-membered macrolide, tylactone. Five new compounds were generated using this expression system.

View Article and Find Full Text PDF

Cyclic 12-, 13- and 14-membered ring angiotensin II analogues related to disulfides but encompassing methylene-dithioether bridges have been prepared. The affinity data from these derivatives were compared to those from the disulfides. The methylenedithioether analogues displayed good binding affinities to rat liver AT1 receptors although in most cases somewhat lower than their disulfide counterparts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!