High birefringence induced by elliptical air hole photonic crystal fibers (EHPCFs) is analyzed numerically using the finite-element method. Statistical correlations between the birefringence and the various parameters are obtained. We found that the complex elliptical air hole is better than that of a circular one to obtain high birefringence in photonic crystal fibers. Our suggested structures can considerably enhance the birefringence in EHPCFs and show that the birefringence can be as high as 1.1294 x 10(-2), which is higher than the birefringence obtained from conventional step-index fiber (5 x 10(-4)), circular air holes PCF (3.7 x 10(-3)), and elliptical hollow PCF (2.35 x 10(-3)).

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.46.005276DOI Listing

Publication Analysis

Top Keywords

high birefringence
12
photonic crystal
12
elliptical air
12
air hole
12
birefringence photonic
8
crystal fibers
8
birefringence
6
high
4
crystal fiber
4
fiber complex
4

Similar Publications

Crystal Structural Editing: Novel Biaxial MgTeO Crystal as Zero-Order Waveplates.

Adv Mater

January 2025

State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, China.

Waveplates are important optical components to control the polarization of light. Currently, they are often fabricated from uniaxial crystals, and there is no report about waveplates based on the biaxial crystals. In this work, a novel biaxial crystal MgTeO with a structure constructed by 0D TeO groups is designed and grown as waveplate materials for the first time.

View Article and Find Full Text PDF

Design and Fabrication of Ultrathin Metallic Phase Shifters for Visible and Near-Infrared Wavelengths.

Micromachines (Basel)

January 2025

State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China.

The polarization state of light is critical for biological imaging, acousto-optics, bio-navigation, and many other optical applications. Phase shifters are extensively researched for their applications in optics. The size of optical elements with phase delay that are made from natural birefringent materials is limited; however, fabricating waveplates from dielectric metamaterials is very complex and expensive.

View Article and Find Full Text PDF

This study evaluated the osteogenic potential of the bioactive glasses SinGlass (45S5) and SinGlass High (F18) in regenerating critical bone defects in rat calvaria. Both biomaterials promoted new bone formation around the particles, with the SinGlass High (F18) group exhibiting a higher rate of bone maturation. Histomorphological and birefringence analyses revealed better organization of the newly formed bone in the biomaterial-treated groups, and immunohistochemistry indicated the expression of osteogenic markers such as osteocalcin, immunostaining for bone morphogenetic protein 2 (BMP 2), and immunostaining for bone morphogenetic protein 4 (BMP 4).

View Article and Find Full Text PDF

Green Starch Modification Using Citric Acid: Quinoa, Chickpea, and Cassava Starches.

Foods

January 2025

Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia.

Dietary fibre deficiency has been associated with various global health challenges. Starch, as a main component of many staple foods, is typically very low in fibre content. The primary aim of this research was to increase the dietary fibre and alter the physicochemical properties of some common and emerging starches (cassava, quinoa, and chickpea starch) using eco-friendly modifications.

View Article and Find Full Text PDF

We present two novel antimony(III)-based tellurite sulfate crystals, Sb(TeO)(SO)-1̅ (I) and Sb(TeO)(SO)-2/ (II), synthesized using a dual lone pair strategy that incorporates Sb and Te ions into a sulfate framework. This approach significantly enhances the birefringence of these compounds, with values of 0.11 and 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!