AI Article Synopsis

  • The study investigates how single-stranded polynucleotides behave when passed through an alpha-hemolysin protein pore, noting that ionic current drops by about 50% during this process.
  • Many of the observed states involve the polynucleotide occupying the pore's vestibule, with some configurations involving the transmembrane region.
  • The experiment finds that the likelihood of a polymer escaping or threading through the pore varies with the applied voltage and polymer orientation, providing insights into single-molecule behavior.

Article Abstract

We characterize the substate structure of current blockades produced when single-stranded polynucleotide molecules were electrophoretically driven into the alpha-hemolysin protein pore. We frequently observe substates where the ionic current is reduced by approximately 50%. Most of these substates can be associated with a molecular configuration where a polymer occupies only the vestibule region of the pore, though a few appear related to a polymer occupying only the transmembrane beta-barrel region of the pore. The duration of the vestibule configuration depends on polymer composition and on which end of the polymer, 3' or 5', subsequently threads into the narrowest constriction and initiates translocation. Below approximately 140 mV a polymer is more likely to escape from the vestibule against the applied voltage gradient, while at higher voltages a polymer is more likely to follow the voltage gradient by threading through the narrowest constriction and translocating through the pore. Increasing the applied voltage also increases the duration of the vestibule configuration. A semiquantitative model of these trends suggests that escape has stronger voltage dependence than threading, and that threading is sensitive to polymer orientation while escape is not. These results emphasize the utility of alpha-hemolysin as a model system to study biologically relevant physical and chemical processes at the single-molecule level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2025643PMC
http://dx.doi.org/10.1529/biophysj.107.107003DOI Listing

Publication Analysis

Top Keywords

ionic current
8
current blockades
8
region pore
8
duration vestibule
8
vestibule configuration
8
narrowest constriction
8
applied voltage
8
voltage gradient
8
polymer
7
blockades dna
4

Similar Publications

Androgenic alopecia (AGA), the most prevalent type of progressive hair loss, currently lacks an effective topical treatment regimen. In this study, we synthesized an ionic liquid (IL) to co-solubilize minoxidil (MXD) and finasteride (FIN) and subsequently formulated them into an in situ thermosensitive ionic liquid/cyclodextrin/poloxamer hydrogel (ICPG), termed M + F@ICPG. M + F@ICPG was developed for the transdermal co-delivery of these two drugs, aiming to provide a multipath therapeutic approach for AGA while avoiding the adverse effects commonly associated with oral FIN and topical MXD tincture.

View Article and Find Full Text PDF

Silicon-based all-solid-state batteries operating free from external pressure.

Nat Commun

January 2025

Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Key Laboratory of Low Dimensional Condensed Matter Physics (Department of Education of Fujian Province), Jiujiang Research Institute, Xiamen University, Xiamen, China.

Silicon-based all-solid-state batteries offer high energy density and safety but face significant application challenges due to the requirement of high external pressure. In this study, a LiSi/Si-LiSi double-layered anode is developed for all-solid-state batteries operating free from external pressure. Under the cold-pressed sintering of LiSi alloys, the anode forms a top layer (LiSi layer) with mixed ionic/electronic conduction and a bottom layer (Si-LiSi layer) containing a three-dimensional continuous conductive network.

View Article and Find Full Text PDF

Peptides can be designed to self-assemble into predefined supramolecular nanostructures, which are then employed as biomaterials in a range of applications, including tissue engineering, drug delivery, and vaccination. However, current self-assembling peptide (SAP) hydrogels exhibit inadequate self-healing capacities and necessitate the use of sophisticated printing apparatus, rendering them unsuitable for 3D printing under physiological conditions. Here, we report a precisely designed charged peptide, Z5, with the object of investigating the impact of electrostatic interactions on the self-assembly and the rheological properties of the resulting hydrogels.

View Article and Find Full Text PDF

In this preliminary study, the long-term effects of calcium chloride crosslinking concentration on viability of 16HBE14o- human bronchial epithelial cells embedded in alginate-extracellular matrix (ECM) or alginate-methylcellulose-ECM hydrogels have been investigated. There is currently a limited understanding regarding the effects of crosslinking solution concentration on lung epithelial cells embedded in hydrogel. Furthermore, the effects of calcium chloride concentration in crosslinking solutions on other cell types have not been reported regarding whether the addition of viscosity and stiffness tuning agents such as methylcellulose will alter the responses of cells to changes in calcium chloride concentration in crosslinking solutions.

View Article and Find Full Text PDF

Electroosmosis reduces the available energy from ion transport arising due to concentration gradients across ion-exchange membranes. This work builds on previous efforts to describe the electroosmosis, the permselectivity and the apparent transport number of a membrane, and we show new measurements of concentration cells with the Selemion CMVN cation-exchange membrane and single-salt solutions of HCl, LiCl, NaCl, MgCl, CaCl and NHCl. Ionic transport numbers and electroosmotic water transport relative to the membrane are efficiently obtained from a relatively new permselectivity analysis method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!