Negative autoregulation of Src homology region 2-domain-containing phosphatase-1 in rat basophilic leukemia-2H3 cells.

Int Immunol

Department of Immunology and Signal Transduction, Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organization for Medical Science, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan.

Published: September 2007

Src homology region 2-domain-containing phosphatase-1 (SHP-1) plays an important role in the regulation of signaling from various receptors in hematopoietic cells. In mast cells, SHP-1 has been shown to negatively regulate the initial signaling triggered by high-affinity receptor for IgE (FcepsilonRI) and positively regulate downstream outputs. To clarify the molecular mechanisms of SHP-1 in mast cells, we determined substrates for SHP-1 by using the substrate-trapping approach. When phosphatase-inactive SHP-1 was over-expressed in rat basophilic leukemia (RBL)-2H3 cells, tyrosine phosphorylation of a 68-kDa protein was enhanced before and after FcepsilonRI aggregation. Immunoprecipitation and western blot analyses revealed that this protein is SHP-1, either endogenous or ectopically expressed. FcepsilonRI-induced activation of Lyn and Syk was comparable between cells expressing wild-type (wt) and phosphatase-inactive SHP-1. In vitro phosphatase assay and combined transfection, immunoprecipitation and immunoblot analyses showed that tyrosine 536 of SHP-1 was potent phosphorylation site and that SHP-1 could dephosphorylate this site that had been phosphorylated by Lyn. Furthermore, the phosphatase activity of SHP-1 immunoprecipitated from cells expressing a phosphatase-inactive SHP-1 was increased compared with that from vector-transfected or wt SHP-1-expressing cells. Finally, expression of phosphatase-inactive SHP-1 resulted in decreased activation of mitogen-activated protein kinases and suppressed transcription of cytokine genes, whereas wt SHP-1 enhanced these processes. Taken collectively, these results suggest that SHP-1 may be a physiological substrate of SHP-1 in RBL-2H3 cells and that dephosphorylation of SHP-1 leads to a decrease in its catalytic activity and an enhancement of downstream signaling. A negative autoregulatory circuit of SHP-1 may contribute to mast cell regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/intimm/dxm070DOI Listing

Publication Analysis

Top Keywords

shp-1
17
phosphatase-inactive shp-1
16
cells
9
src homology
8
homology region
8
region 2-domain-containing
8
2-domain-containing phosphatase-1
8
rat basophilic
8
mast cells
8
rbl-2h3 cells
8

Similar Publications

Perfluorooctane sulfonate (PFOS), a widely distributed and persistent organic pollutant, is known to cause immune dysfunction. In a previous study, we reported that PFOS modestly increases mast cell activation. However, its effects on FcεRI (a high-affinity IgE receptor)-mediated mast cell activation, a pivotal process in inflammatory allergic reactions and innate immunity, have not been clearly demonstrated.

View Article and Find Full Text PDF

Purpose: Mitochondrial dysfunction mediated by c-Jun N-terminal kinase (JNK) plays an important role in lipotoxic liver injury in nonalcoholic steatohepatitis (NASH). This study aims to investigate the pharmacological mechanism of Jiangzhi Granule (JZG), a Chinese herbal formula against NASH, with a focus on its regulation of JNK signaling-mediated mitochondrial function.

Methods: Hepatocytes were induced by palmitic acid (PA) for 24 h to establish an in vitro lipotoxic model, which was simultaneously treated with either JZG or vehicle control.

View Article and Find Full Text PDF

Adaptive immune cells antagonize ILC2 homeostasis via SLAMF3 and SLAMF5.

Sci Adv

January 2025

Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei 230032, China.

Type 2 innate lymphoid cells (ILC2s) mainly reside in tissues with few lymphoid cells. How their tissue residency is regulated remains poorly understood. This study explores the inhibitory role of SLAM-family receptors (SFRs) on adaptive immune cells in ILC2 maintenance.

View Article and Find Full Text PDF

Disseminated cancer cells in the peritoneal fluid often colonize omental fat-associated lymphoid clusters but the mechanisms are unclear. Here, we identify that innate-like B cells accumulate in the omentum of mice and women with early-stage ovarian cancer concomitantly with the extrusion of chromatin fibers by neutrophils called neutrophil extracellular traps (NETs). Studies using genetically modified NET-deficient mice, pharmacologic inhibition of NETs, and adoptive B cell transfer show that NETs induce expression of the chemoattractant CXCL13 in the pre-metastatic omentum, stimulating recruitment of peritoneal innate-like B cells that in turn promote expansion of regulatory T cells and omental metastasis through producing interleukin (IL)-10.

View Article and Find Full Text PDF

Research progress of SHP-1 agonists as a strategy for tumor therapy.

Mol Divers

December 2024

Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, ShenZhen Hospital, Southern Medical University, Shenzhen, 518000, People's Republic of China.

Src homology-2 domain-containing protein tyrosine phosphatase 1 (SHP-1) is a member of protein tyrosine phosphatase (PTP) family, and serves as a crucial negative regulator of various oncogenic signaling pathways. The development of SHP-1 agonists has garnered extensive research attention and is considered as a promising strategy for treating tumors. In this review, we comprehensively analyze the advancements of SHP-1 agonists, focusing on their structures and biological activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!