Channel blocking, anti-oscillatory, and anti-epileptic effects of clinically used anti-absence substances (ethosuximide, valproate) and the T-type Ca2+ current (IT) blocker mibefradil were tested by analyzing membrane currents in acutely isolated local circuit interneurons and thalamocortical relay (TC) neurons, slow intrathalamic oscillations in brain slices, and spike and wave discharges (SWDs) occurring in vivo in Wistar Albino Glaxo rats from Rijswijk (WAG/Rij). Substance effects in vitro were compared between WAG/Rij and a non-epileptic control strain, the ACI rats. Ethosuximide (ETX) and valproate were found to block IT in acutely isolated thalamic neurons. Block of IT by therapeutically relevant ETX concentrations (0.25-0.75 mM) was stronger in WAG/Rij, although the maximal effect at saturating concentrations (>or=10 mM) was stronger in ACI. Ethosuximide delayed the onset of the low threshold Ca2+ spike (LTS) of neurons recorded in slice preparations. Mibefradil (>or=2 microM) completely blocked IT and the LTS, dampened evoked thalamic oscillations, and attenuated SWDs in vivo. Computational modeling demonstrated that the complete effect of ETX can be replicated by a sole reduction of IT. However, the necessary degree of IT reduction was not induced by therapeutically relevant ETX concentrations. A combined reduction of IT, the persistent sodium current, and the Ca2+ activated K+ current resulted in an LTS alteration resembling the experimental observations. In summary, these results support the hypothesis of IT reduction as part of the mechanism of action of anti-absence drugs and demonstrate the ability of a specific IT antagonist to attenuate rhythmic burst firing and SWDs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2007.05.030DOI Listing

Publication Analysis

Top Keywords

local circuit
8
circuit interneurons
8
acutely isolated
8
therapeutically relevant
8
relevant etx
8
etx concentrations
8
t-current effects
4
effects antiepileptic
4
antiepileptic drugs
4
ca2+
4

Similar Publications

Unlabelled: Neurophysiology studies propose that predictive coding is implemented via alpha/beta (8-30 Hz) rhythms that prepare specific pathways to process predicted inputs. This leads to a state of relative inhibition, reducing feedforward gamma (40-90 Hz) rhythms and spiking to predictable inputs. We refer to this model as predictive routing.

View Article and Find Full Text PDF

A guide to CNN-based dense segmentation of neuronal EM images.

Microscopy (Oxf)

January 2025

Department of Biomedical Data Science, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan.

Large-scale reconstitution of neuronal circuits from volumetric electron microscopy images is a remarkable research goal in neuroanatomy. However, the large-scale reconstruction is a result of automatic segmentation using convolutional neural networks (CNNs), which is still challenging for general researchers to perform. This review focuses on two representative CNNs for dense neuronal segmentation: flood-filling networks (FFN) and local shape descriptors (LSD)-predicting U-Net (LSD network).

View Article and Find Full Text PDF

This research utilizes density functional theory to investigate the ground and excited-state properties of a new series of organic dyes with D-π-A configurations (D1-D6) for their potential application in dye-sensitized solar cells. The study focuses on modifying these dyes using various functional groups as π-bridges to optimize their electronic properties and improve their efficiency as sensitizers in DSSCs. The frontier molecular orbitals (HOMO and LUMO) were analysed to evaluate electron transfer properties.

View Article and Find Full Text PDF

Photovoltaic arrays are exposed to outdoor conditions year-round, leading to degradation, cracks, open circuits, and other faults. Hence, the establishment of an effective fault diagnosis system for photovoltaic arrays is of paramount importance. However, existing fault diagnosis methods often trade off between high accuracy and localization.

View Article and Find Full Text PDF

Odours released by objects in natural environments can contain information about their spatial locations. In particular, the correlation of odour concentration timeseries produced by two spatially separated sources contains information about the distance between the sources. For example, mice are able to distinguish correlated and anti-correlated odour fluctuations at frequencies up to 40 Hz, while insect olfactory receptor neurons can resolve fluctuations exceeding 100 Hz.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!