Predicting the binding properties of cibacron blue F3GA in affinity separation systems.

Int J Biol Macromol

Dicle University, Department of Chemistry, Diyarbakir, Turkey.

Published: October 2007

The binding properties of cibacron blue F3GA (CB-F3GA) bound to a model NAD(P)H/FAD(H2)-dependent protein system, namely cytosolic quinone reductase (QR), was characterized by AMBER in an attempt to address the binding properties of immobilized CB-F3GA used in the separation of serum albumin. A favorable binding free energy of -4.52kcal/mol (KD=5.09 x 10(-4)kcal/mol) was determined for CB-F3GA binding by MM-PBSA method, which was found to be a ballpark estimate of empirical values reported in literature (DeltaG approximately -6kcal/mol). We propose that CB-F3GA primarily follows a class III binding motif in presence of FAD in the binding site of QR in solution, while a class II binding motif is observed in the crystal form. It was found that favorable van der Waals/hydrophobic interactions take place in the binding site making a major contribution to a favorably dominating enthalpy of binding (DeltaHtot=-25.87kcal/mol) as compared to a disfavorable binding entropy term (TDeltaStot=-21.35kcal/mol). Additional MM-PBSA experiments in the absence of FAD gave rise to a disfavorable binding free energy for CB in complex with QR, suggesting that FAD is an essential determinant of CB-F3GA binding. This is in contrast to an earlier observation of Denizli et al. on separation of human serum albumin (HSA) by immobilized CB-F3GA in the absence of FAD. Therefore, a class I binding model for CB-F3GA is proposed here to account for the efficient separation of HSA in affinity chromatography systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2007.06.008DOI Listing

Publication Analysis

Top Keywords

binding
13
binding properties
12
properties cibacron
8
cibacron blue
8
blue f3ga
8
immobilized cb-f3ga
8
serum albumin
8
binding free
8
free energy
8
cb-f3ga binding
8

Similar Publications

In this study, we employed a novel fluorescent probe, RO7304924-which selectively targets cannabinoid 2 receptor (CB2R)-to assess the lateral mobility of CB2R within the plasma membrane of Chinese hamster ovary cells stably expressing a functional, untagged receptor variant. Utilizing confocal fluorescence recovery after photobleaching (FRAP), we quantified the diffusion coefficient and mobile fraction of CB2R, thereby demonstrating the efficacy of RO7304924 as an innovative tool for elucidating the dynamics of this major endocannabinoid-binding G protein-coupled receptor. Our present findings highlight the potential of combining advanced ligand-based fluorescent probes with FRAP for future investigations into the biochemical details of CB2R mobility in living cells, and its impact on receptor-dependent cellular processes.

View Article and Find Full Text PDF

The occurrence of external L-glutamate at the Arabidopsis root tip triggers major changes in root architecture, but the mechanism of -L-Glu sensing is unknown. Members of the family of GLUTAMATE RECEPTOR-LIKE (GLR) proteins are known to act as amino acid-gated Ca-permeable channels and to have signalling roles in diverse plant processes. To investigate the possible role of GLRs in the root architectural response to L-Glu, we screened a collection of mutants with T-DNA insertions in each of the 20 AtGLR genes.

View Article and Find Full Text PDF

Background: Breast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.

View Article and Find Full Text PDF

Background: Certain micronutrient levels have been associated with the risk of developing TB disease. We explored the possible association of selected at-risk micronutrient levels with the development of Mycobacterium tuberculosis (M.tb) infection.

View Article and Find Full Text PDF

Noncovalent interactions are present in numerous synthetic and biological systems, playing an essential role in vital processes for life such as stabilization of proteins' structures or reversible binding in substrate-receptor complexes. Their study is relevant, but it presents challenges due to its inherent weak nature. In this context, molecular balances (MBs) are one of the most efficient physical organic chemistry tools to quantify noncovalent interactions, bringing beneficial knowledge regarding their nature and strength.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!