Functional mGlu receptor subtypes are found in stem/progenitor cells, and regulate proliferation, differentiation, and survival of these cells. Activation of mGlu5 receptors supports self-renewal of embryonic stem cells, which are pluripotent cells isolated from the blastocyst capable of generating all the body's cell lineages, including germ cells. Differentiation of embryonic stem cells into embryoid bodies is associated with the induction of mGlu4 receptors, the activation of which drives cell differentiation towards the mesoderm and endoderm lineages. Different mGlu receptor subtypes, mGlu3 and mGlu5 receptors in particular, are found in neural stem cells (stem cells resident in the CNS that give rise to neurons, astrocytes or oligodendrocytes) isolated from the developing brain or from regions of persistent neurogenesis of the adult brain (e.g. the subventricular zone lining the wall of the lateral ventricles). The evidence that activation of mGlu3 and mGlu5 receptors stimulates proliferation of these cells is particularly interesting because of the similarities between neural stem cells and putative cancer stem cells that support the growth of malignant gliomas. A link among mGlu receptors, stem cells and cancer is supported by the finding that mGlu4 receptors are expressed by cerebellar granule cell neuroprogenitors, which are the putative cells of origin of medulloblastomas. The study of mGlu receptors in stem/progenitor cells has potential applications in the optimisation of protocols of cell expansion and differentiation aimed at cell replacement strategies, and may gain new insights into the pathophysiology of neurodevelopmental disorders and brain tumours.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2007.05.031DOI Listing

Publication Analysis

Top Keywords

stem cells
28
cells
15
stem/progenitor cells
12
mglu5 receptors
12
receptors
8
receptors stem/progenitor
8
mglu receptor
8
receptor subtypes
8
embryonic stem
8
mglu4 receptors
8

Similar Publications

Rotator cuff tears are the most common conditions in sports medicine and attract increasing attention. Scar tissue healing at the tendon-bone interface results in a high rate of retears, making it a major challenge to enhance the healing of the rotator cuff tendon-bone interface. Biomaterials currently employed for tendon-bone healing in rotator cuff tears still exhibit limited efficacy.

View Article and Find Full Text PDF

Background: Protein-truncating mutations in the titin gene are associated with increased risk of atrial fibrillation. However, little is known about the underlying pathophysiology.

Methods: We identified a heterozygous titin truncating variant (TTNtv) in a patient with unexplained early onset atrial fibrillation and normal ventricular function.

View Article and Find Full Text PDF

Central nervous system hemangioblastoma (CNS-HB) is the most common manifestation of von Hippel-Lindau disease (VHL). The main axis of the CNS-HB pathway is the VHL-HIF signaling pathway. Recently, we proposed an alternative VHL-JAK-STAT pathway in CNS-HB.

View Article and Find Full Text PDF

Today, cancer has become one of the leading global tragedies. It occurs when a small number of cells in the body mutate, causing some of them to evade the body's immune system and proliferate uncontrollably. Even more irritating is the fact that patients with cancers frequently relapse after conventional chemotherapy and radiotherapy, leading to additional suffering.

View Article and Find Full Text PDF

Spatial distribution-based progression of spinal cord injury pathology: a key role for neuroimmune cells.

Front Immunol

January 2025

Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Department of Neurosurgery, Shanghai, China.

An external trauma, illness, or other pathological cause can harm the structure and function of the spinal cord, resulting in a significant neurological disorder known as spinal cord injury (SCI). In addition to impairing movement and sensory functions, spinal cord injury (SCI) triggers complex pathophysiological responses, with the spatial dynamics of immune cells playing a key role. The inflammatory response and subsequent healing processes following SCI are profoundly influenced by the spatial distribution and movement of immune cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!