Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The dynamics of nitric oxide (NO) and peroxynitrite concentration changes during brain ischemia/reperfusion are poorly understood. In this paper, a NO-selective sensor was used to measure NO concentration changes in the rat brain hippocampus during global brain ischemia/reperfusion. Four-vessel occlusion model of transient global brain ischemia was used. Global cerebral ischemia was induced by occluding both common carotid arteries with artery nips (for 20 min) and reperfusion was induced by loosening the artery nips. Results showed that the changes of NO concentration during global brain ischemia/reperfusion could be divided into different stages. Together with the effects of O2 tension changes and NO synthase (NOS) on nitric oxide levels, we determined five stages in the NO concentration profile: (1) acute O2-limited decrease stage; (2) O2-limited steady stage; (3) neuronal NOS activation stage; (4) acute O2-recovery elevation stage; and (5) O2-recovery steady stage. In addition, a chemical reaction network model was constructed to simulate the dynamics of peroxynitrite during the reperfusion stage, and the effects of a change in the NO formation rate on the dynamics of peroxynitrite were investigated specifically. Results show the rate of NO formation has a great influence on peroxynitrite dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11064-007-9414-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!