A study on co-localization of FSH and its receptor in rat hippocampus.

J Mol Histol

Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710032, China.

Published: February 2008

AI Article Synopsis

  • The study investigated the presence of FSH and its receptor in hippocampal neurons, which was previously unknown.
  • The researchers used various techniques to analyze the distribution and co-localization of FSH, its receptor, and GnRH receptors in rat hippocampus.
  • Results showed that FSH and its receptor are indeed expressed in the hippocampal neurons, indicating that these neurons may be regulated by FSH, possibly through paracrine or autocrine mechanisms.

Article Abstract

It has been known that GnRH, LH and their receptors exist in hippocampal neurons. However, whether FSH and its receptor also exist in hippocampal neurons remained unknown yet. In situ hybridization, double-labeled immunofluorescence stain and double-labeled immunohistochemistry stain in adjacent sections were used in our research to study the distribution, co-localization of FSH and its receptor and co-localization of FSH and GnRH receptor in rat hippocampus. The result found that pyramidal neurons from CA1 to CA4 region and granule neurons in dentate gyrus could express FSH and its receptor, majority of hippocampal neurons co-expressed FSH and its receptor, FSH and GnRH receptor. These suggested that hippocampal neurons not only express FSH but also act as FSH target cells. FSH may regulate the function of hippocampal neurons by ways of paracrine or autocrine. At the same time, GnRH may regulate the function of FSH neuron in hippocampus through GnRH receptor.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10735-007-9125-2DOI Listing

Publication Analysis

Top Keywords

fsh receptor
20
hippocampal neurons
20
co-localization fsh
12
gnrh receptor
12
fsh
11
receptor
8
receptor rat
8
rat hippocampus
8
hippocampus gnrh
8
exist hippocampal
8

Similar Publications

Type 2 diabetes mellitus (T2DM) adversely affects various organs, including the brain and its blood barrier. In addition to the brain, hyperglycemia damages the testes. The testes possess blood-tissue barriers that share common characteristics and proteins with the blood-brain barrier (BBB), including breast cancer-resistant protein (BCRP).

View Article and Find Full Text PDF

FSH exacerbates bone loss by promoting osteoclast energy metabolism through the CREB-MDH2-NAD axis.

Metabolism

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China. Electronic address:

Aims: Osteoclast energy metabolism is a promising target for treating diseases characterized by high osteoclast activity, such as osteoporosis. However, the regulatory factors involved in osteoclast bioenergetic processes are still in the early stages of being fully understood. This study reveals the effects of follicle-stimulating hormone (FSH) on osteoclast energy metabolism.

View Article and Find Full Text PDF

Structural and evolutionary insights into the functioning of glycoprotein hormones and their receptors.

Andrology

January 2025

Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA.

The neuroendocrine system that comprises the glycoprotein hormones (GpHs) and their receptors is essential for reproduction and metabolism. Each GpH hormone is an αβ heterodimer of cystine-knot proteins and its cognate receptor is a G-protein coupled receptor (GPCR) distinguished by a large leucine-rich-repeat (LRR) extracellular domain that binds the hormone and a class A GPCR transmembrane domain that signals through an associating heterotrimeric G protein. Hence, the receptors are called LRR-containing GPCRs-LGRs.

View Article and Find Full Text PDF

Abnormality of granulosa cells (GCs) is the critical cause of follicular atresia in premature ovarian failure (POF). RIPK3 is highly expressed in GCs derived from atretic follicles. We focus on uncovering how RIPK3 contributes to ovarian GC senescence.

View Article and Find Full Text PDF

Kisspeptin control of hypothalamus-pituitary-ovarian functions.

Vitam Horm

January 2025

Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar pradesh, India.

The discovery of Kisspeptin (Kiss) has opened a new direction in research on neuroendocrine control of reproduction in vertebrates. Belonging to the RF amide family of peptides, Kiss and its cognate receptor Gpr54 (Kissr) have a long and complex evolutionary history. Multiple forms of Kiss and Kissr are identified in non-mammalian vertebrates, with the exception of birds, and monotreme mammals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!