The protective effect of the vagus nerve in a murine model of chronic relapsing colitis.

Am J Physiol Gastrointest Liver Physiol

Intestinal Diseases Research Programme, Health Science Center, McMaster Univ. Medical Center, 1200 Main St. West, Hamilton, ON L8N 3Z5, Canada.

Published: October 2007

The vagus nerve inhibits the response to systemic administration of endotoxin, and we have recently extended this observation to show that the vagus attenuates acute experimental colitis in mice. The purpose of the present study was to determine whether there is a tonic counterinflammatory influence of the vagus on colitis maintained over several weeks. We assessed disease activity index, macroscopic and histological damage, myeloperoxidase (MPO) activity, and Th1 and Th2 cytokine profiles in chronic colitis induced by administration of dextran sodium sulfate (DSS) in drinking water for three cycles during 5 days with 11 days of rest between each cycle (DSS 3, 2, 2%) in healthy and vagotomized C57BL/6 mice and in mice deficient in macrophage-colony stimulating factor (M-CSF). A pyloroplasty was performed in vagotomized mice. Vagotomy accelerated the onset and the severity of inflammation during the first and second but not the third cycle. Although macroscopic scores were not significantly changed, histological scores as well as MPO activity and colonic tissue levels of IL-1alpha, TNF-alpha, IFN-gamma, and IL-18 but not IL-4 were significantly increased in vagotomized mice compared with sham-operated mice that received DSS. In control mice (without colitis), vagotomy per se did not affect any inflammatory marker. Vagotomy had no effect on the colitis in M-CSF-derived macrophage-deficient mice. These results indicate that the vagus protects against acute relapses on a background of chronic inflammation. Identification of the molecular mechanisms underlying the protective role of parasympathetic nerves opens a new therapeutic avenue for the treatment of acute relapses of chronic inflammatory bowel disease.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpgi.00240.2007DOI Listing

Publication Analysis

Top Keywords

vagus nerve
8
mice
8
mpo activity
8
vagotomized mice
8
acute relapses
8
colitis
6
protective vagus
4
nerve murine
4
murine model
4
chronic
4

Similar Publications

: The Index of Response to Stimulation (IRES) is a new index that we introduce in this study to grade the effectiveness of vagus nerve stimulation in the treatment of drug-resistant epilepsy. We assessed 76 patients at 6, 12, and 18 months after VNS evaluating improvement with the IRES in four key dimensions: seizure duration decrease, seizure intensity decrease, improvement in quality of life, and seizure frequency decrease. This scale goes from 0, meaning no improvement, to 8, meaning maximal improvement, making the scale a really good measure of clinical utility.

View Article and Find Full Text PDF

The visceral organ-brain axis, mediated by vagal sensory neurons, is essential for maintaining various physiological functions. Here, we investigate the impact of liver-projecting vagal sensory neurons on energy balance, hepatic steatosis, and anxiety-like behavior in mice under obesogenic conditions. A small subset of vagal sensory neurons innervate the liver and project centrally to the nucleus of the tractus solitarius, area postrema, and dorsal motor nucleus of the vagus, and peripherally to the periportal areas in the liver.

View Article and Find Full Text PDF

Dysphonia and Laryngopharyngeal Reflux.

Otolaryngol Clin North Am

January 2025

Department of Otolaryngology-Head and Neck Surgery, University of Illinois Health and Hospital System, 1009 S. Wood Street, Suite 6C, Chicago, IL 60616, USA.

Dysphonia is a common symptom of laryngopharyngeal reflux disease (LPRD) and requires multimodal, patient-centered care to address. Challenges in diagnosing LPRD can also complicate treatment of nonspecific dysphonia symptoms. Careful history taking with sensitivity to cultural lifestyle components in each patient is critical to management.

View Article and Find Full Text PDF

3,4-Methylenedioxymethamphetamine (MDMA) is a widely recognized entactogen frequently used recreationally. It is known for its interaction with the serotonin and oxytocin systems, which underlie its entactogenic effects in humans. Recently, we demonstrated that the gut-brain axis, mediated by the subdiaphragmatic vagus nerve, contributes to MDMA-induced resilience enhancement in rodents.

View Article and Find Full Text PDF

Objective: Inflammation contributes to morbidity following subarachnoid hemorrhage (SAH). The authors of this study evaluate how applying noninvasive transauricular vagus nerve stimulation (taVNS) can target this deleterious inflammatory response following SAH and reduce the rate of radiographic vasospasm.

Methods: In this prospective, triple-blinded, randomized controlled trial, 27 patients were randomized to taVNS or sham stimulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!