Mutations in adenomatous polyposis coli (APC) underlie the earliest stages of colorectal carcinogenesis. Consequences of APC mutation include stabilization of beta-catenin, dysregulation of cyclooxygenase-2 (COX-2) expression, and loss of retinoic acid production, events with poorly defined interactions. Here we showed that treatment of zebrafish expressing a truncated form of Apc with either retinoic acid or a selective COX-2 inhibitor decreased beta-catenin protein levels and downstream signaling events. Interestingly, the destruction of beta-catenin in apc mutant embryos following Cox-2 inhibition required the presence of truncated Apc. These findings support roles for retinoic acid and Cox-2 in regulating the stability of beta-catenin following Apc loss. Furthermore, truncated Apc appears to retain the ability to target beta-catenin for destruction, but only in the absence of Cox-2 activity. This novel function of truncated Apc may provide a molecular basis for the efficacy of COX-2 inhibitors in the treatment of colon cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M609768200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!