Control of spatiotemporal chaos in catalytic CO oxidation by laser-induced pacemakers.

Philos Trans A Math Phys Eng Sci

Centro de Astrobiología (CSIC-INTA), Instituto Nacional de Técnica Aeroespacial, Ctra de Ajalvir km. 4, 28850 Torrejón de Ardoz, Madrid, Spain.

Published: February 2008

Control of spatiotemporal chaos is achieved in the catalytic oxidation of CO on Pt(110) by localized modification of the kinetic properties of the surface chemical reaction. In the experiment, a small temperature heterogeneity is created on the surface by a focused laser beam. This heterogeneity constitutes a pacemaker and starts to emit target waves. These waves slowly entrain the medium and suppress the spatiotemporal chaos that is present in the absence of control. We compare this experimental result with a numerical study of the Krischer-Eiswirth-Ertl model for CO oxidation on Pt(110). We confirm the experimental findings and identify regimes where complete and partial controls are possible.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2007.2099DOI Listing

Publication Analysis

Top Keywords

spatiotemporal chaos
12
control spatiotemporal
8
catalytic oxidation
8
oxidation pt110
8
chaos catalytic
4
oxidation laser-induced
4
laser-induced pacemakers
4
pacemakers control
4
chaos achieved
4
achieved catalytic
4

Similar Publications

Dynamic patterns in herding predator-prey system: Analyzing the impact of inertial delays and harvesting.

Chaos

December 2024

Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India.

This study expands traditional reaction-diffusion models by incorporating hyperbolic dynamics to explore the effects of inertial delays on pattern formation. The kinetic system considers a harvested predator-prey model where predator and prey populations gather in herds. Diffusion and inertial effects are subsequently introduced.

View Article and Find Full Text PDF

Life-threatening cardiac arrhythmias such as ventricular fibrillation are often based on chaotic spiral or scroll wave dynamics which can be self-terminating. In this work, we investigate the influence of conduction heterogeneities on the duration of such chaotic transients in generic models of excitable cardiac media. We observe that low and medium densities of heterogeneities extend the average transient lifetime, while at high densities very long transients, potentially persistent chaos, and periodic attractors occur.

View Article and Find Full Text PDF

Exploring spatiotemporal patterns of high-dimensional electroencephalography (EEG) time series generated from complex brain system is crucial for deciphering aging and cognitive functioning. Analyzing high-dimensional EEG series poses challenges, particularly when employing distance-based methods for spatiotemporal dynamics. Therefore, we proposed an innovative methodology for multi-channel EEG data, termed as Spatiotemporal Information-based Similarity (STIBS) analysis.

View Article and Find Full Text PDF

Coffee leaf rust is a prevalent botanical disease that causes a worldwide reduction in coffee supply and its quality, leading to immense economic losses. While several pandemic intervention policies (PIPs) for tackling this rust pandemic are commercially available, they seem to provide only partial epidemiological relief for farmers. In this work, we develop a high-resolution spatiotemporal economical-epidemiological model, extending the Susceptible-Infected-Removed model, that captures the rust pandemic's spread in coffee tree farms and its associated economic impact.

View Article and Find Full Text PDF

Symmetry breaker governs synchrony patterns in neuronal inspired networks.

Chaos

November 2024

Department of Electrical and Computer Engineering, Clarkson University, 8 Clarkson Ave., Potsdam 13699, New York, USA.

Experiments in the human brain reveal switching between different activity patterns and functional network organization over time. Recently, multilayer modeling has been employed across multiple neurobiological levels (from spiking networks to brain regions) to unveil novel insights into the emergence and time evolution of synchrony patterns. We consider two layers with the top layer directly coupled to the bottom layer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!