Platinum and palladium variations through the urban environment: evidence from 11 sample types from Sheffield, UK.

Sci Total Environ

School of Earth, Ocean and Planetary Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3YE, UK.

Published: October 2007

Platinum (Pt) and Palladium (Pd) concentrations have been analysed in 194 samples from within the city of Sheffield in the UK. The samples were taken from road dust, gully pots (also known as drains), soils, a motorway drainage pipe, rivers, lakes, sewage sludge, incinerator ash, incinerator ash in landfill, street cleansers and gully cleansers. The introduction of Pt- and Pd-bearing automobile catalysts, has been cited as the cause of a rise in the concentration of urban Pt and Pd accumulations. Geochemical analyses for the different sample types are used here to show how the Pt and Pd accumulate in different urban environments as they are transported from their catalytic source. Initially Pt and Pd collect in road dust and gully pots at values of up to 450 ppb although most analyses for both elements are around 100 ppb. The four roadside soils analysed, have a great range in values, the highest with a value of over 600 ppb Pt and 1000 ppb Pd. Then the fate of the Pt and Pd is either to be removed by gully flushers and road sweepers (which contain around half the concentration of that in road dust) or to be washed from the roads, through the gully pots, into either the river or urban drainage systems. Due to the addition of terrestrial sediments, river samples contain much reduced values of Pt and Pd, at approximately an order of magnitude lower than in road dust. Similarly, sewage sludge contains Pt and Pd values which are lower than road dust. However, the Pt and Pd analyses are much higher in incinerated sewage (with many samples over 150 ppb for both metals), probably due to the loss of the mass of other material during the incineration process. Weathered incinerator ash in landfill has lower values of Pt and Pd than fresh ash from the incinerator. Although the range in values of Pt and Pd is similar for road dust and gully pot sediments their modal values tell a different story. The mode for Pt is very similar for both road dust and gully pot sediments, at around 100 ppb, whereas there is a drop of 50 ppb in the mode for Pd in the gully pots (from 80 ppb to around 40 ppb). Given that gully pot sediment is derived from road dust, it is suggested that in gully pots, Pd is preferentially mobilized over Pt. Furthermore, a comparison of the modal values of Pt and Pd in river sediments suggests that this process continues into the natural drainage system of the city.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2007.06.004DOI Listing

Publication Analysis

Top Keywords

road dust
32
gully pots
20
dust gully
16
incinerator ash
12
gully pot
12
gully
10
road
9
ppb
9
platinum palladium
8
sample types
8

Similar Publications

Deep learning-based algorithm for classifying high-resolution computed tomography features in coal workers' pneumoconiosis.

Biomed Eng Online

January 2025

Department of Pulmonary and Critical Care Medicine, National Health Commission Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, People's Republic of China.

Background: Coal workers' pneumoconiosis is a chronic occupational lung disease with considerable pulmonary complications, including irreversible lung diseases that are too complex to accurately identify via chest X-rays. The classification of clinical imaging features from high-resolution computed tomography might become a powerful clinical tool for diagnosing pneumoconiosis in the future.

Methods: All chest high-resolution computed tomography (HRCT) medical images presented in this work were obtained from 217 coal workers' pneumoconiosis (CWP) patients and dust-exposed workers.

View Article and Find Full Text PDF

To study the micro-morphological characteristics of PM2.5 and its effect on ambient air quality, a 7500F scanning electron microscope (SEM) was utilized in this study to examine the micromorphology and elemental composition of PM2.5 and its impact on ambient air quality during heavily polluted weather in Yining City in the winter of 2018-2019.

View Article and Find Full Text PDF

Particle Size-Dependent Monthly Variation of Pollution Load, Ecological Risk, and Sources of Heavy Metals in Road Dust in Beijing, China.

Toxics

January 2025

Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.

Road dust carries various contaminants and causes urban non-point source pollution in waterbodies through runoff. Road dust samples were collected in each month in two years and then sieved into five particle size fractions. The concentrations of ten heavy metals (As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn, Fe) in each fraction were measured.

View Article and Find Full Text PDF

Efficient Degradation of Industrial Biowaste via In-Vessel Composting-Technical and Microbial Assessments.

Bioengineering (Basel)

January 2025

Department of Chemical and Environmental Engineering, University of Nottingham, Broga Road, Semenyih 43500, Selangor, Malaysia.

In this study, a pilot-scale in-vessel composter was used to treat a mixture of industrial biowaste, with soybean curd residue and saw dust as the major substrates. The composter is capable of treating up to 350 tons/month of waste, producing up to 150 tons/month of high-quality compost within a retention time of 7-10 days. The final compost has an average nitrogen-phosphorus-potassium content of 6%, moisture content of 28%, pH of 6.

View Article and Find Full Text PDF

Road activities are recognized sources of pollution that affect the hydrochemistry of nearby water bodies. This study evaluated the Water Quality Monitoring Program in the Soberbo and Iconha rivers in the Guapi-Macacu watershed, which is affected by the BR-116 highway. The Rio-Teresópolis Concessionaire from 2009 to 2016 carried out quarterly sampling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!