The simultaneous presentation of two tones with frequencies f(1) and f(2) causes the perception of several combination tones in addition to the original tones. The most prominent of these are at frequencies f(2)-f(1) and 2f(1)-f(2). This study measured human physiological responses to the 2f(1)-f(2) combination tone at 500 Hz caused by tones of 750 and 1000 Hz with intensities of 65 and 55 dB SPL, respectively. Responses were measured from the cochlea using the distortion product otoacoustic emission (DPOAE), and from the auditory cortex using the 40-Hz steady-state magnetoencephalographic (MEG) response. The perceptual response was assessed by having the participant adjust a probe tone to cause maximal beating ("best-beats") with the perceived combination tone. The cortical response to the combination tone was evaluated in two ways: first by presenting a probe tone with a frequency of 460 Hz at the perceptual best-beats level, resulting in a 40-Hz response because of interaction with the combination tone at 500 Hz, and second by simultaneously presenting two f(1) and f(2) pairs that caused combination tones that would themselves beat at 40 Hz. The 2f(1)-f(2) DPOAE in the external auditory canal had a level of 2.6 (s.d. 12.1) dB SPL. The 40-Hz MEG response in the contralateral cortex had a magnitude of 0.39 (s.d. 0.1) nA m. The perceived level of the combination tone was 44.8 (s.d. 11.3) dB SPL. There were no significant correlations between these measurements. These results indicate that physiological responses to the 2f(1)-f(2) combination tone occur in the human auditory system all the way from the cochlea to the primary auditory cortex. The perceived magnitude of the combination tone is not determined by the measured physiological response at either the cochlea or the cortex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.2751250 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!