Scientic-production association "Microgen" has finished 1st phase of clinical trials of candidate vaccines against avian influenza in order to assess their reactogenicity, safety, and immunogenicity. Two vaccines constructed from NIBRG-14 vaccine strain [A/Vietnam/1 194/2004 (H5N1)], obtained from World Health Organization, were studied: "OrniFlu" (inactivated subunit influenza vaccine adsorbed on aluminium hydroxide) and inactivated polymer-subunit influenza vaccine with polyoxydonium (IPSIV). Clinical trial of the vaccines with different quantity of antigen (15, 30, and 45 mcg of H5N1 virus hemagglutinin) was carried out in Influenza Research Institute (St. Petersburg) and in Mechnikov Research Institute of Vaccines and Sera (Moscow). Analysis of results allowed to conclude that both vaccines were safe, well tolerated and characterized by low reactogenicity. Two-doses vaccination schedule was needed to meet required seroconversion and seroprotection rates (> or =1:40 in > or =70% of vaccinated volunteers). "Orni-Flu" vaccine containing 15 mcg of hemagglutinin and optimal quantity of aluminium hydroxide (0.5 mg) in one dose as well as IPSIV containing 45 mcg of hemagglutinin and 0.75 mg of polyoxydonium in one dose were most immunogenic after 2 doses - seroprotection rates in microneutralization assay were 72.2% and 77.0% respectively. Marked influence of aluminium hydroxide content on immunogenicity of the "OrniFlu" vaccine was confirmed in the study. Optimal quantity of adjuvant was 0.5 mg per dose. According to basic concept of vaccine development, preference is given to vaccine that under minimal quantity of antigen induces sufficient specific immune response and is safe in volunteers. "OrniFlu" vaccine containing 15 mcg of H5N1 virus hemagglutinin and optimal quantity of aluminium hydroxide (0.5 mg) corresponded to these requirements that allowed researchers to recommend it for clinical trials of 2nd phase.
Download full-text PDF |
Source |
---|
RSC Adv
January 2025
Kunming Metallurgical Research Institute Co., Ltd Kunming 650000 China.
Scandium (Sc) extraction from iron and aluminum waste is a promising technique for the recycling and valorization of laterite nickel ore waste. Iron and aluminum waste is one source of scandium during preparation of nickel and cobalt hydroxide by wet smelting of laterite nickel ore. The content of Sc is notably higher than that of the raw materials, as the element is enriched in the iron and aluminum waste.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
To prevent water scarcity, wastewater must be discharged to the surface or groundwater after being treated. Another method is to reuse wastewater in some areas after treatment and evaluate it as much as possible. In this study, it is aimed to recover and reuse the caustic (sodium hydroxide, NaOH) used in the recycling of plastic bottles from polyethylene terephthalate (PET) washing wastewater.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
Recombinant adeno-associated viruses (rAAVs) have emerged as promising vaccine vectors due to their enduring efficacy with a single dose. However, insufficient cellular immune responses and the random and non-specific distribution of AAVs post-injection may hinder the development of AAV vaccines. Here, a novel Pickering emulsion platform stabilized by biomineralized manganese nanoparticles and aluminum hydroxide, which can rapidly and efficiently load AAVs, is reported.
View Article and Find Full Text PDFSci Rep
January 2025
Research Laboratory of Inorganic Chemical Process Technologies, School of Chemical Engineering, University of Science and Technology, Narmak, Tehran, 1684613114, Iran.
This study aims to utilize secondary aluminum dross waste to synthesize Fe-Al layered double hydroxide (Fe-Al LDH) for efficient adsorption of arsenic from drinking water. The synthesis process was based on a multi-step hydrometallurgical approach, in which the aluminum content in the waste was first converted to sodium aluminate. This was followed by the transformation into Fe-Al LDH through a series of processes, including gelation, sol formation, simultaneous precipitation, and aging.
View Article and Find Full Text PDFBMJ Open
January 2025
Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
Introduction: Persistent throat symptoms (PTS) are indicators for over 60 000 new patient referrals to NHS secondary care annually. PTS have been attributed to manifestation of gastro-oesophageal reflux disease (GORD) with the hypothesis that gastric refluxate damages and irritates the mucosa of the upper aerodigestive tract. Symptoms of PTS and GORD are commonly treated with proton pump inhibitors (PPIs) or alginates are often, incorrectly, advocated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!