Bladder cancer is the fourth most common malignant disease worldwide, accounting for 4% of all cancer cases. In Singapore, it is the ninth most common form of cancer. The high mortality rate in bladder cancer can be reduced by early treatment following pre-cancerous screening. Currently, the gold standard for screening bladder tumors is histological examination of biopsy specimens, which is both invasive and time-consuming. In this study, ex vivo urine fluorescence cytology was investigated to offer an alternative timely and biopsy-free means for detecting bladder cancers. Sediments in patient urine samples were extracted and incubated with a novel photosensitizer, hypericin. Laser confocal microscopy was used to capture the fluorescence images at an excitation wavelength of 488 nm. Images were subsequently processed to single out the exfoliated bladder cancer cells from the other cells based on the cellular size. Intensity histograms of each targeted cell and feature vectors, derived from the histogram moments, were used to represent each sample. A difference in the distribution of the feature vectors of normal and low-grade cancerous bladder cancer cells were observed. A diagnostic algorithm for discriminating between normal and low-grade cancerous cells is elucidated in this report. This study suggests that the fluorescence intensity profiles of hypericin in bladder cells can potentially provide an automated quantitative means of early bladder cancer diagnosis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

bladder cancer
24
bladder
9
cancer
8
cancer cells
8
feature vectors
8
normal low-grade
8
low-grade cancerous
8
cells
5
fluorescence
4
fluorescence detection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!