Human skin equivalents (HSEs) show great similarities to human native skin. However, one of the key processes impaired under in vitro conditions is desquamation. Desquamation involves the degradation of the corneodesmosomes, in which various enzymes participate. Activation of these enzymes is affected by several microenvironmental factors such as pH and water level. The water level is assumed to depend on the presence of natural moisturizing factors (NMF). In this study, the levels of water and one of the prominent NMF components--pyrrolidone carboxylic acid (PCA)--were examined. In HSE generated under normal culture conditions (93% relative humidity (RH)), the water level and PCA content appeared to be much lower than in the native counterpart. To increase the water and PCA levels in HSE, a culture method was established in which HSE was reconstructed under reduced RH. Although at 40% RH the PCA levels in reconstructed and native tissue are similar, the hydration levels in reconstructed tissue remain still lower. Only topical application of water induced marked swelling of corneocytes. This clearly shows that the stratum corneum water level in HSE is regulated by other, still unknown, factors, in addition to NMF.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.jid.5700994DOI Listing

Publication Analysis

Top Keywords

water level
16
water
8
human skin
8
skin equivalents
8
relative humidity
8
pca levels
8
levels reconstructed
8
water distribution
4
distribution natural
4
natural moisturizer
4

Similar Publications

The Lentinus edodes polysaccharide (LEP) was extracted with a new subcritical water extraction (SWE) enhanced with deep eutectic solvent (DES) method and then purified with a DEAE-52 cellulose column and a Sephadex G-100 column. Two purified polysaccharides (LEP1 and LEP2) were obtained and their structure, antioxidant activity, and immunomodulatory activity were analyzed. LEP1 and LEP2 were composed of mannose, glucose, and galactose with a molar ratio of 1:12.

View Article and Find Full Text PDF

Effect of Ph on the Physicochemical Properties of a Cassava Peel Starch Biopolymer.

Cell Physiol Biochem

January 2025

Carrera de Agroindustria, Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, ESPAM-MFL, Calceta. 130250, Ecuador.

Background/aims: This study investigates how pH levels affect the characteristics of biopolymer films manufactured from cassava peel starch. Cassava peel starch's abundance and biodegradability make it a promising candidate for sustainable packaging. The study seeks to improve film qualities such as thickness, density, moisture content, solubility, and optical properties by altering pH levels.

View Article and Find Full Text PDF

Biological invasions are a major threat to biodiversity, ecosystem functioning and nature's contributions to people worldwide. However, the effectiveness of invasive alien species (IAS) management measures and the progress toward achieving biodiversity targets remain uncertain due to limited and nonuniform data availability. Management success is usually assessed at a local level and documented in technical reports, often written in languages other than English, which makes such data notoriously difficult to collect at large geographic scales.

View Article and Find Full Text PDF

With freshwater resources becoming scarce worldwide, mariculture is a promising avenue to sustain aquaculture development, especially by incorporating brackish and saline groundwater (GW) use into fish farming. A 75-day rearing trial was conducted to evaluate fish growth, immune response, overall health, and water quality of Chelon ramada cultured in brackish GW and fed on a basal diet (BD) augmented with rosemary oil (RO) or RO + zymogen forte™ (ZF) as an anti-flatulent. Five treatments were administrated in triplicate: T1: fish-fed BD without additives (control group); T2: fish-fed BD + 0.

View Article and Find Full Text PDF

Growth, physiological and molecular response of calcium and salicylic acid primed wheat under lead stress.

Mol Biol Rep

January 2025

Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt.

Background: Heavy metal contamination, particularly from lead (Pb), poses a significant threat to plant agriculture worldwide, adversely affecting growth, physiological functions, and yield. Signalling molecules such as calcium and salicylic acid are known to mitigate various stresses in plants, prompting this study to explore their interaction with Pb stress in wheat.

Methods: A pot experiment was conducted in which wheat grains were primed with either distilled water, 5 mM calcium (Ca), or 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!