The function of BRCA1 and BRCA2 in DNA repair could affect the sensitivity of cells to cytotoxic agents, and would therefore be an important component of planning therapy for breast and ovarian cancers. Previously, both BRCA1- and BRCA2-deficient tumors were shown to be sensitive to mitomycin C, and the mechanism was presumed to be a defect in the repair of interstrand crosslinks by homologous recombination. Here, we show that both BRCA1 and BRCA2 determine the sensitivity to the cytotoxic drug, etoposide, using genetic complementation of BRCA-deficient cells. Etoposide is known to bind to topoisomerase II and prevent the resolution of the "cleavable complex," in which one DNA duplex is passed through a second duplex. The specificity of this BRCA-dependent sensitivity was confirmed by the use of aclarubicin, which is a catalytic inhibitor of topoisomerase II and prevents the formation of the cleavable complex. In the presence of aclarubicin, the differential sensitivity of BRCA-proficient and BRCA-deficient cells was lost. Thus, etoposide requires the presence of topoisomerase II to show specific sensitization in the absence of the function of BRCA1 or BRCA2. We conclude that homologous recombination is used in the repair of DNA damage caused by topoisomerase II poisons. Overall, these results suggest that etoposide is a potentially useful drug in the treatment of BRCA-deficient human cancers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-07-0601 | DOI Listing |
Cureus
December 2024
Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, IND.
Background: Curcumin (Cur) is a polyphenol phyto-compound found in turmeric () that inhibits tumorigenesis by introducing apoptosis and restricting cell survival and proliferation. This in vitro research article focuses on the pharmacodynamic interactions of Cur combined with the commercial drug doxorubicin (Doxo) to enhance the cytotoxicity of Doxo at lower doses against triple-negative breast cancer cells (MDA-MB-231) with the chemo-protective effect against normal HEK293 cells. In this study, we observed the dose-dependent cytotoxicity, increased reactive oxygen species (ROS) generation, and increased chromatin condensation in combination doses compared to single doses.
View Article and Find Full Text PDFPathologica
October 2024
Division of Experimental Oncology, Istituto Europeo di Oncologia, IRCCS, Milano.
Objective: Prostate cancer (PCa) is the most common cause of cancer-related deaths in men worldwide. BRCA1/2 genes are reported altered in approximately 1% and 8% of PCa cases, respectively. To date, formalin-fixed paraffin-embedded (FFPE) tissues have a consolidate use in the clinical practice, but with a significant drawback related to DNA/RNA degradation during the pre-analytical process.
View Article and Find Full Text PDFCirc Res
January 2025
Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, China (H.J.).
Background: Metabolic syndrome heightens cardiovascular disease risk primarily through increased arterial stiffness. We previously demonstrated the involvement of YAP (Yes-associated protein) in high-fat/high-sucrose diet (HFHSD)-induced arterial stiffness via modulation of PPM1B (protein phosphatase Mg/Mn-dependent 1B)-lysine63 (K63) deubiquitination. In this study, we aimed to elucidate the role and mechanisms underlying PPM1B deubiquitination in HFHSD-induced arterial stiffness.
View Article and Find Full Text PDFFront Oncol
December 2024
Oncoclinicas (OC) Medicina de Precisão (OCPM), São Paulo, Brazil.
Introduction: The prevalence of germline pathogenic/likely pathogenic variants (P/LP) in high and moderate penetrance (HMP) genes is approximately 7%-10% among breast cancer (BC) patients. The prevalence and spectrum of BC P/LP variants are affected by several factors. There are limited genetic data from Brazilian patients with BC.
View Article and Find Full Text PDFLife Sci Alliance
March 2025
Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
Variants in the hereditary cancer-associated and genes can alter RNA splicing, producing transcripts that encode internally truncated yet potentially functional proteins. However, few studies have quantitatively analyzed variant-specific splicing isoforms. Here, we investigated cells heterozygous and homozygous for the :c.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!