Recent studies have demonstrated an important role for T-type Ca2+ channels (T-channels) in controlling the excitability of peripheral pain-sensing neurons (nociceptors). However, the molecular mechanisms underlying the functions of T-channels in nociceptors are poorly understood. Here, we demonstrate that reducing agents as well as endogenous metal chelators sensitize C-type dorsal root ganglion nociceptors by chelating Zn2+ ions off specific extracellular histidine residues on Ca(v)3.2 T-channels, thus relieving tonic channel inhibition, enhancing Ca(v)3.2 currents, and lowering the threshold for nociceptor excitability in vitro and in vivo. Collectively, these findings describe a novel mechanism of nociceptor sensitization and firmly establish reducing agents, as well as Zn2+, Zn2+-chelating amino acids, and Zn2+-chelating proteins as endogenous modulators of Ca(v)3.2 and nociceptor excitability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6673068PMC
http://dx.doi.org/10.1523/JNEUROSCI.1800-07.2007DOI Listing

Publication Analysis

Top Keywords

reducing agents
12
sensitize c-type
8
agents well
8
nociceptor excitability
8
agents sensitize
4
nociceptors
4
c-type nociceptors
4
nociceptors relieving
4
relieving high-affinity
4
high-affinity zinc
4

Similar Publications

Background: We investigated chitosan's protective effects against tertiary butylhydroquinone (TBHQ)-induced toxicity in adult male rats, focusing on cognitive functions and oxidative stress in the brain, liver, and kidneys.

Methods: Rats were divided into four groups (n = 8/group): (1) Control, (2) Chitosan only, (3) TBHQ only, and (4) Chitosan + TBHQ.

Results: TBHQ exposure led to significant cognitive impairments and increased oxidative stress, marked by elevated malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and glutathione (GSH) levels.

View Article and Find Full Text PDF

Patients with chronic kidney disease (CKD) and type 2 diabetes mellitus (T2DM) face considerable cardiorenal morbidity and mortality despite existing therapies. Recent clinical trials demonstrate the efficacy of finerenone, a novel non-steroidal mineralocorticoid receptor antagonist, in reducing adverse renal and cardiovascular outcomes. This editorial briefly reviews the evidence and its implications for clinical practice, advocating the use of finerenone in these high-risk patients in combination with currently established treatment agents.

View Article and Find Full Text PDF

Background: HIV and tuberculosis (TB) co-infection poses a significant health challenge, particularly when involving the central nervous system (CNS), where it leads to severe morbidity and mortality. Current treatments face challenges such as drug resistance, immune reconstitution inflammatory syndrome (IRIS), and persistent inflammation. Glutathione (GSH) has the therapeutic potential to enhance treatment outcomes by improving antibiotic efficacy, reducing inflammation, and mitigating immune dysfunction.

View Article and Find Full Text PDF

The global burden of COVID-19 continues to rise, and despite significant progress in vaccine development, there remains a critical need for effective treatments for the severe inflammation and acute lung injury associated with SARS-CoV-2 infection. In this study, we explored the antiviral properties of a plant-derived complex consisting of flavonol and hydroxyorganic acid compounds. Our research focused on the ability of the flavonol and hydroxyorganic acid complex to suppress the activity of several key proteins involved in the replication and maturation of SARS-CoV-2.

View Article and Find Full Text PDF

Herbicidal Formulations with Plant-Based Compounds to Control , and Weeds.

Plants (Basel)

January 2025

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires 5000, Argentina.

Numerous studies have shown the potential effect of bioactive agents against weeds. In this study, we developed two binary formulations with nonanoic acid, citral, or thymoquinone as herbicides and evaluated their physicochemical properties. The presence of the bioactive compounds in the formulations was confirmed through FTIR spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!