Objectives: Despite extensive studies of tumor angiogenesis in non-small cell lung cancer, only a few studies had concentrated on pN2 disease.
Methods: Sixty patients with pN2 non-small cell lung cancer who had undergone a complete resection with a systematic mediastinal lymph node dissection were reviewed retrospectively. Immunohistochemical study, using antibodies against factor VIII, was conducted. We compared between 5-year survivors and the others rather than the cumulative survival rate.
Results: There were 13 patients (21.7%) survived longer than 5 years after a surgical resection. The microvessel density in survivor and non-survivor group was 22.9+/-14.8 and 24.3+/-21.9, respectively. This data indicated that microvessel density might not be related to the ratio of 5-year survivors (P=0.723). Multivariate analysis also showed that microvessel density was not independent prognostic factor.
Conclusions: We failed to find a prognostic significance of tumor angiogenesis in pN2 disease. Although tumor angiogenesis might be important for the development and maintenance, it was not identified as a prognostic factor of pN2 non-small cell lung cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S1569-9293(03)00051-3 | DOI Listing |
Am J Chin Med
January 2025
School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine (NJUCM), Nanjing, Jiangsu, P. R. China.
Colorectal cancer, characterized by its high incidence, concealed early symptoms, and poor prognosis at advanced stages, ranks as the third leading cause of cancer-related deaths worldwide. (AM) refers to the dried roots of (Fisch.) Bge.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea; Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea. Electronic address:
Glucose-regulated protein 94 (GRP94) overexpression plays a critical role in tumor cell survival across various cancers. Previously, we developed K101.1, a fully human antibody targeting cell surface GRP94, which effectively inhibits tumor angiogenesis in colorectal cancer (CRC).
View Article and Find Full Text PDFCell Commun Signal
January 2025
Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy.
Background: Neuropilin-1 (NRP1) is a transmembrane protein involved in surface receptor complexes for a variety of extracellular signals. NRP1 expression in human cancers is associated with prominent angiogenesis and advanced progression stage. However, the molecular mechanisms underlying NRP1 activity in the tumor microenvironment remain unclear.
View Article and Find Full Text PDFCytotechnology
April 2025
Department of Genetics, Osmania University, Hyderabad, Telangana State India.
Targeting tumor angiogenesis with safe endogenous protein inhibitors is a promising therapeutic approach despite the plethora of the first line of emerging chemotherapeutic drugs. The extracellular matrix network in the blood vessel basement membrane and growth factors released from endothelial and tumor cells promote the neovascularization which supports the tumor growth. Contrastingly, small cleaved cryptic fragments of the C-terminal non collagenous domains of the same basement membrane display antiangiogenic effect.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
Emerging evidence demonstrates that inducing ferroptosis, a nonapoptotic programmed cell death mode, holds significant potential for tumor treatment. However, current ferroptosis strategies utilizing exogenous Fenton-type heavy metal species or introducing glutathione (GSH)/glutathione peroxidase 4 (GPX4) suppressants are hampered by latent adverse effects toward organisms, while utilizing endogenous iron may cause undesirable tumor angiogenesis through specific signaling pathways. Here, a ferric ion (Fe)-responsive and DNAzyme-delivered coordination nanosystem (ZDD) is developed to achieve a novel scheme of synergistic tumor-specific ferroptosis and gene therapy, which modulates and harnesses the endogenous iron in tumors for inducing ferroptosis while intercepting tumor angiogenesis to enhance therapeutic efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!