Solid state (13)C NMR studies of the extracellular glucans from the fungi Acremonium persicinum C38 (QM107a) and Acremonium sp. strain C106 indicated a backbone of (1-->3)-beta-linked glucosyl residues with single (1-->6)-beta-linked glucosyl side branches for both glucans. Analyses of enzymatic digestion products suggested that the average branching frequency for the A. persicinum glucan (66.7% branched) was much higher than that of the Acremonium sp. strain C106 glucan (28.6% branched). The solid state (13)C NMR spectra also indicated that both glucans are amorphous polymers with no crystalline regions, and the individual chains are probably arranged as triple helices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carres.2007.06.018DOI Listing

Publication Analysis

Top Keywords

solid state
8
state 13c
8
13c nmr
8
acremonium strain
8
strain c106
8
characterisation extracellular
4
extracellular polysaccharides
4
polysaccharides produced
4
produced isolates
4
isolates fungus
4

Similar Publications

Nanocarriers have shown significant promise in the diagnosis and treatment of various diseases, utilizing a wide range of biocompatible materials such as metals, inorganic substances, and organic components. Despite diverse design strategies, key physicochemical properties, including hydrodynamic diameter, shape, surface charge, and hydrophilicity/lipophilicity, are crucial for optimizing biodistribution, pharmacokinetics, and therapeutic efficacy. However, these properties are often influenced by drug payload, presenting an ongoing challenge in developing versatile platform technologies for theranostics.

View Article and Find Full Text PDF

The vibron behavior of hydrogen bears significant importance for understanding the phases of solid hydrogen under high pressure. In this work, we reveal an unusual high-pressure behavior of hydrogen confined within nanopores through a combination of experimental measurements and theoretical calculations. The nanoconfined hydrogen molecules retain an hcp lattice up to 170 GPa, yet significant deviations from the vibrational characteristics of bulk hydrogen are observed in the primary vibrons of both Raman and infrared spectra.

View Article and Find Full Text PDF

Magnesium hydride (MgH) is a promising material for solid-state hydrogen storage due to its high gravimetric hydrogen capacity as well as the abundance and low cost of magnesium. The material's limiting factor is the high dehydrogenation temperature (over 300 °C) and sluggish (de)hydrogenation kinetics when no catalyst is present, making it impractical for onboard applications. Catalysts and physical restructuring (e.

View Article and Find Full Text PDF

This paper explores the process of forming arrays of vertically oriented carbon nanotubes (CNTs) localized on metal electrodes using thin porous anodic alumina (PAA) on a solid substrate. On a silicon substrate, a titanium film served as the electrode layer, and an aluminium film served as the base layer in the initial film structure. A PAA template was formed from the Al film using two-step electrochemical anodizing.

View Article and Find Full Text PDF

Background: Liver transplant (LT) patients face various challenges, including an increased risk of coronary artery disease (CAD) for a variety of reasons, with 70% of LT recipients having one cardiovascular event. Coronary artery bypass grafting (CABG) remains one of the most commonly performed major surgical procedures in the United States, with 20-30% of LT patients requiring a CABG. Many studies have analyzed when to perform a CABG and CAD workup pre-LT, but this population remains a problem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!