Nuclear morphometric descriptors such as nuclear size, shape, DNA content and chromatin organization are used by pathologists as diagnostic markers for cancer. However, our knowledge of events resulting in changes in nuclear shape and chromatin organization in cancer cells is limited. Nuclear matrix proteins, which include lamins, transcription factors (Sp1) and histone modifying enzymes (histone deacetylases), and histone modifications (histone H3 phosphorylation) have roles in organizing chromatin in the interphase nucleus, regulating gene expression programs and determining nuclear shape. Histone H3 phosphorylation, a downstream target of the Ras-mitogen activated protein kinase pathway, is involved in neoplastic transformation. This article will review genetic and epigenetic events that alter chromatin organization in cancer cells and the role of the nuclear matrix in determining nuclear morphology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.21485 | DOI Listing |
Bioorg Chem
January 2025
FSBI A A Smorodintsev Research Institute of Influenza, Saint Petersburg, Russian Federation. Electronic address:
Poly(ADP-ribose) polymerase-1 (PARP-1) is the key enzyme among other PARPs for post-translational modification of DNA repair proteins. It has four functional domains for DNA-binding, automodification and enzymatic activity. PARP-1 participates in poly-ADP-ribosylation of itself or other proteins during DNA damage response.
View Article and Find Full Text PDFSci Data
January 2025
BGI Research, Shenzhen, 518083, China.
The mammalian nervous system controls complex functions through highly specialized and interacting structures. Single-cell sequencing can provide information on cell-type-specific chromatin structure and regulatory elements, revealing differences in chromatin organization between different cell types and their potential roles of these differences in brain function. Here, we generated a chromatin accessibility dataset through single-cell ATAC-seq of 174,593 high-quality nuclei from 16 adult rat brain regions.
View Article and Find Full Text PDFCell
January 2025
Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Biochemistry, Biophysics, Chemical Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA; Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. Electronic address:
The centromere is the chromosomal locus that recruits the kinetochore, directing faithful propagation of the genome during cell division. Using cryo-ET on human mitotic chromosomes, we reveal a distinctive architecture at the centromere: clustered 20- to 25-nm nucleosome-associated complexes within chromatin clearings that delineate them from surrounding chromatin. Centromere components CENP-C and CENP-N are each required for the integrity of the complexes, while CENP-C is also required to maintain the chromatin clearing.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.
Understanding chromatin organization requires integrating measurements of genome connectivity and physical structure. It is well established that cohesin is essential for TAD and loop connectivity features in Hi-C, but the corresponding change in physical structure has not been studied using electron microscopy. Pairing chromatin scanning transmission electron tomography with multiomic analysis and single-molecule localization microscopy, we study the role of cohesin in regulating the conformationally defined chromatin nanoscopic packing domains.
View Article and Find Full Text PDFGenes Genomics
January 2025
Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, 32439, Republic of Korea.
Background: Soil salinity has been a serious threat to agricultural production worldwide, including soybeans. Glycine soja, the wild ancestor of cultivated soybeans, harbors high genetic diversity and possesses attractive rare alleles.
Objective: We conducted a transcriptome analysis of G.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!