Lectin-based food poisoning: a new mechanism of protein toxicity.

PLoS One

Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia, United States of America.

Published: August 2007

Background: Ingestion of the lectins present in certain improperly cooked vegetables can result in acute GI tract distress, but the mechanism of toxicity is unknown. In vivo, gut epithelial cells are constantly exposed to mechanical and other stresses and consequently individual cells frequently experience plasma membrane disruptions. Repair of these cell surface disruptions allows the wounded cell to survive: failure results in necrotic cell death. Plasma membrane repair is mediated, in part, by an exocytotic event that adds a patch of internal membrane to the defect site. Lectins are known to inhibit exocytosis. We therefore tested the novel hypothesis that lectin toxicity is due to an inhibitory effect on plasma membrane repair.

Methods And Findings: Repair of plasma membrane disruptions and exocytosis of mucus was assessed after treatment of cultured cell models and excised segments of the GI tract with lectins. Plasma membrane disruptions were produced by focal irradiation of individual cells, using a microscope-based laser, or by mechanical abrasion of multiple cells, using a syringe needle. Repair was then assessed by monitoring the cytosolic penetration of dyes incapable of crossing the intact plasma membrane. We found that cell surface-bound lectins potently inhibited plasma membrane repair, and the exocytosis of mucus that normally accompanies the repair response.

Conclusions: Lectins potently inhibit plasma membrane repair, and hence are toxic to wounded cells. This represents a novel form of protein-based toxicity, one that, we propose, is the basis of plant lectin food poisoning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1933252PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000687PLOS

Publication Analysis

Top Keywords

plasma membrane
32
membrane disruptions
12
membrane repair
12
membrane
9
food poisoning
8
individual cells
8
plasma
8
exocytosis mucus
8
lectins potently
8
repair
7

Similar Publications

Background: Extracellular vesicles (EVs) play a crucial role in intraspecies and interspecies communication, significantly influencing physiological and pathological processes. Outer membrane vesicles (OMVs) secreted by Gram-negative bacteria are rich in components from the parent cells and are important for bacterial communication, immune evasion, and pathogenic mechanisms. However, the extraction and purification of OMVs face numerous challenges due to their small size and heterogeneity.

View Article and Find Full Text PDF

Background: In the diagnosis of linear IgA bullous dermatosis (LABD), detection of IgA at the epidermal basement membrane zone and circulating IgA autoantibodies are essential. The disease has two subtypes, lamina lucida-type and sublamina densa-type, with 120 kDa LAD-1 and 97 kDa LABD97 as major autoantigens for lamina lucida-type. Normal human epidermal keratinocytes (NHEK) and HaCaT cells are widely used for immunoblotting (IB) in the diagnosis process, but they do not provide high sensitivity and semiquantitative analysis.

View Article and Find Full Text PDF

Induced membrane technique (IMT) is a new method for repairing segmental bone defects. However, the mechanism of its defect repair is not clear. In recent years, several studies have gradually indicated that ferroptosis is closely related to bone remodeling.

View Article and Find Full Text PDF

Ultrastructural expansion microscopy (U-ExM) visualization of malaria parasite dense granules using RESA as a representative marker protein.

Parasitol Int

December 2024

Divisions of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan. Electronic address:

Dense granules (DG) are understudied apical organelles in merozoites, the malaria parasite stage that invades erythrocytes. Only six proteins have been identified which localize to DGs, despite that DG proteins play crucial roles in multiple steps of intraerythrocytic parasite development. To develop a tool for investigating DG structure and function, this study applied ultrastructural expansion microscopy (U-ExM) to visualize the ring-infected erythrocyte surface antigen (RESA) in Plasmodium falciparum merozoites.

View Article and Find Full Text PDF

Oogenesis involves a novel nuclear envelop remodeling mechanism in Schmidtea mediterranea.

Dev Biol

December 2024

Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA. Electronic address:

The cell nuclei of Ophisthokonts, the eukaryotic supergroup defined by fungi and metazoans, is remarkable in the constancy of their double-membraned structure in both somatic and germ cells. Such remarkable structural conservation underscores common and ancient evolutionary origins. Yet, the dynamics of disassembly and reassembly displayed by Ophisthokont nuclei vary extensively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!