A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Human umbilical cord blood-derived CD34+ cells may attenuate spinal cord injury by stimulating vascular endothelial and neurotrophic factors. | LitMetric

AI Article Synopsis

  • Human cord blood-derived CD34(+) cells were studied for their potential benefits in treating spinal cord injuries (SCI) in a rat model, where different groups were injected with either CD34(+) cells, CD34(-) cells, or saline after inducing SCI.
  • The experiment measured the improvement in motor functions, spinal cord infarction, and cell apoptosis using various assays over seven days post-injury.
  • Results demonstrated that CD34(+) cells significantly improved hind limb function and reduced spinal cord damage by increasing levels of neurotrophic factors GDNF and VEGF, which were not present with CD34(-) cells.

Article Abstract

Human umbilical cord blood-derived CD34(+) cells were used to elucidate the mechanisms underlying the beneficial effects exerted by cord blood cells in spinal cord injury (SCI). Rats were divided into four groups: (1) sham operation (laminectomy only); (2) laminectomy + SCI + CD34(-) cells (5 x 10(5) human cord blood lymphocytes and monocytes that contained <0.2% CD34(+) cells); (3) laminectomy + SCI + CD34(+) cells (5 x 10(5) human cord blood lymphocytes and monocytes that contained approximately 95% CD34(+) cells); and (4) laminectomy + SCI + saline (0.3 mL). Spinal cord injury was induced by compressing the spinal cord for 1 min with an aneurysm clip calibrated to a closing pressure of 55 g. CD34 cells or saline was administered immediately after SCI via the tail vein. Behavioral tests of motor function measured by maximal angle an animal could hold to the inclined plane were conducted at days 1 to 7 after SCI. The triphenyltetrazolium chloride staining and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling assay were also conducted after SCI to evaluate spinal cord infarction and apoptosis, respectively. To elucidate whether glial cell line-derived neurotrophic factor (GDNF) or vascular endothelial growth factor (VEGF) can be secreted in spinal cord-injured area by the i.v. transplanted CD34(+) cells, analysis of spinal cord homogenate supernatants by specific enzyme-linked immunosorbent assay for GDNF or immunofluorescence for VEGF was conducted. It was found that systemic administration of CD34(+), but not CD34(-), cells significantly attenuated the SCI-induced hind limb dysfunction and spinal cord infarction and apoptosis. Both GDNF and VEGF could be detected in the injured spinal cord after transplantation of CD34(+), but not CD34(-), cells. The results indicate that CD34(+) cell therapy may be beneficial in reversing the SCI-induced spinal cord infarction and apoptosis and hindlimb dysfunction by stimulating the production of both VEGF and GDNF in a spinal cord compression model.

Download full-text PDF

Source
http://dx.doi.org/10.1097/shk.0b013e31805cddceDOI Listing

Publication Analysis

Top Keywords

human umbilical
8
umbilical cord
8
cord blood-derived
8
blood-derived cd34+
8
cd34+ cells
8
spinal cord
8
cord injury
8
cord blood
8
cord
6
cells
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!