Tissue-specific alterations in 11beta-hydroxysteroid dehydrogenase (HSD) type 1 activity, which amplifies glucocorticoid action, are thought to contribute to some of the metabolic complications of obesity. The present study tested whether hypertriglyceridemia is one such complication by investigating the effects of an 11beta-HSD1 inhibitor (compound A, 3 mgxkg(-1)xday(-1), 21 days) on triglyceride (TG) metabolism in a rat model of diet-induced obesity. The dose of compound A used did not affect food intake or final body weight. Compound A improved fasting triglyceridemia (-42%) through a robust reduction (-41%) in hepatic TG secretion rate, without change in plasma TG clearance rate. Uptake of TG-derived fatty acids was, however, increased in oxidative tissues, including red gastrocnemius (+47%), heart (+39%), and brown adipose tissue (BAT, +46%) at the expense of the liver, with a concomitant increase in plasma membrane fatty acid-binding protein. Lipid oxidation products were increased in red gastrocnemius (+35%) and heart (+33%), as were levels of uncoupling protein 1 mRNA in BAT (+48%), and carnitine palmitoyltransferase 1 activity tended to be increased in some oxidative tissues. These findings demonstrate that pharmacological inhibition of 11beta-HSD1 at a dose that does not affect food intake improves triglyceridemia by reducing hepatic very low density lipoprotein-TG secretion, with a shift in the pattern of TG-derived fatty acid uptake toward oxidative tissues, in which lipid accumulation is prevented by increased lipid oxidation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpendo.00276.2007 | DOI Listing |
Dig Dis Sci
January 2025
Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.
Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.
View Article and Find Full Text PDFJ Neurochem
January 2025
Center for Protein Diagnostics (PRODI) Biospectroscopy, Ruhr University Bochum, Bochum, Germany.
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Aβ) plaques in the brain, contributing to neurodegeneration. This study investigates lipid alterations within these plaques using a novel, label-free, multimodal approach. Combining infrared (IR) imaging, machine learning, laser microdissection (LMD), and flow injection analysis mass spectrometry (FIA-MS), we provide the first comprehensive lipidomic analysis of chemically unaltered Aβ plaques in post-mortem human AD brain tissue.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
Sepsis-induced acute lung injury (ALI) is a common acute and severe reason of death in the intensive care unit. Although the pathogenesis is complicated and multifactorial, elevated inflammation and oxidative stress are considered as fundamental mechanisms for the progression of ALI. Anemonin is a natural compound with diverse biological properties including anti-inflammatory and anti-oxidative effects.
View Article and Find Full Text PDFAnal Methods
November 2017
Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
Nitric oxide (NO) is an important signaling molecule that is involved in stress response, homeostasis, host defense, and cell development. In most cells, NO levels are in the femtomolar to micromolar range, with extracellular concentrations being much lower. Thus, real time measurement of spatiotemporal NO dynamics near the surface of living cells/tissues is a major challenge.
View Article and Find Full Text PDFJ Physiol Anthropol
January 2025
University of Wrocław, Wrocław, Poland.
Background: The oxidative handicap hypothesis posits that testosterone-dependent traits, such as muscle mass and strength, may be costly to develop due to testosterone's pro-oxidative properties, leading to increased oxidative stress. This hypothesis suggests that only individuals with superior biological conditions can afford these costs. This study examines the oxidative handicap hypothesis, exploring the relationship between muscle mass or handgrip strength and oxidative stress markers in men.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!