Introduction: Both glucocorticoid and mineralocorticoid receptors (GRs and MRs) help modulate cortisol feedback on the hypothalamic-adrenal-pituitary (HPA) axis. In brain, MRs inhibit the HPA axis and are thought to be fully occupied. Thus, prior studies of the effects of an MR agonist on HPA axis activity have first used metyrapone to inhibit cortisol production and to consequently deplete the receptors. Herein, we propose that an MR agonist may inhibit the HPA axis without first "unloading" receptors of endogenous cortisol.

Methods: Healthy subjects were admitted to the General Clinical Research Center. Blood was sampled for cortisol and adrenocorticotropic hormone (ACTH) from 16:00 to 24:00 h, when greatest MR activity is expected, on two consecutive nights. The first night established a baseline and the second night established response. On the second afternoon, all subjects were given 0.5mg fludrocortisone. Mean cortisol and ACTH were computed from 16:00 to 24:00 h.

Results: Fludrocortisone acutely decreased mean cortisol (p=0.003; effect size (ES) 1.65) and mean ACTH (p=0.000, ES 4.46). Additionally, post hoc analysis showed that fludrocortisone tended to decrease the cortisol/ACTH ratio (p=0.0686, ES 0.92) across the same time period.

Conclusions: Fludrocortisone significantly inhibits nocturnal HPA axis activity without first depleting MR receptors with metyrapone. This suggests that brain MRs are not fully occupied by endogenous cortisol and can be further activated by an agonist. The decrease in cortisol/ACTH ratio suggests a possible role on adrenal sensitivity as well. The ability to lower nocturnal HPA axis activity has interesting implications in disorders of HPA axis excess, such as insomnia, depression and healthy aging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.psyneuen.2007.05.016DOI Listing

Publication Analysis

Top Keywords

hpa axis
32
axis activity
16
hpa
8
hypothalamic-adrenal-pituitary hpa
8
axis
8
inhibit hpa
8
fully occupied
8
1600 2400
8
night established
8
decrease cortisol/acth
8

Similar Publications

The immune-inflammatory responses on the hypothalamic-pituitary-adrenal axis and the neurovascular unit in perioperative neurocognitive disorder.

Exp Neurol

January 2025

Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea. Electronic address:

Perioperative neurocognitive disorders (PNDs) refer to a wide spectrum of cognitive impairment persisting days to even after a year postoperative with significant morbidity and mortality. However, despite much efforts involving perioperative managements, PNDs are still prevalent with no standard preventative and therapeutic strategy. To overcome PNDs, a better understanding of pathophysiology of PNDs is crucial and a large number of studies have proven that immune-inflammatory responses from surgical stress are involved in the abnormal activation of the hypothalamic-pituitary-adrenal (HPA) axis and destabilization of neurovascular unit (NVU) that lead to PNDs.

View Article and Find Full Text PDF

Association between depression and the prevalence and prognosis of prediabetes: Data from National Health and Nutrition Examination Survey (NHANES) 2013-2018.

PLoS One

January 2025

Department of Pharmacy, NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.

Background: Diagnosis and intervention of prediabetes is an emerging approach to preventing the progression and complications of diabetes. Inflammatory factors and dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis have been suggested as potential mechanisms underlying the pathogenesis of both diabetes and depression. However, the relationship between depression levels and the prevalence of prediabetes and its prognosis remains elusive.

View Article and Find Full Text PDF

Severe mental disorders are multi-dimensional constructs, resulting from the interaction of genetic, biological, psychosocial, and environmental factors. Among the latter, pollution and climate change are frequently being considered in the etiopathogenesis of severe mental disorders. This systematic review aims to investigate the biological mechanisms behind the relationship between environmental pollutants, climate change, and mental disorders.

View Article and Find Full Text PDF

Radiotherapy-induced Hypothalamic-Pituitary axis dysfunction in adult Brain, head and neck and skull base tumor patients - A systematic review and Meta-Analysis.

Clin Transl Radiat Oncol

March 2025

Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands.

Background And Purpose: Radiotherapy for brain, head & neck (HN), and skull base (SB) tumors may deliver significant radiation dose to the hypothalamic-pituitary axis (HPA), leading to impaired functioning of this region and hence, to endocrine disorders. The purpose of this systematic review and -analysis is to investigate literature on HP dysfunction after radiation for non-pituitary brain, HN, or SB tumors at adult age, aiming to give insight in the prevalence of HP dysfunction related to radiation dose.

Materials And Methods: Literature search of the PubMed database was performed for HP dysfunction after radiotherapy in adult patients.

View Article and Find Full Text PDF

Corticotropin-releasing factor (CRF) and urocortins (UCN1, UCN2 and UCN3) belong to the same CRF family of neuropeptides. They regulate the neuroendocrine, autonomic and behavioral responses to stress via two CRF receptors (CRF1 and CRF2). Stress, anxiety and depression affects the activity of the hypothalamic-pituitary-adrenal (HPA) axis and the serotoninergic neurotransmission, both being regulated by CRF and CRF-related peptides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!