Four new ethylnitrosourea derivatives of substituted naphthalimides 3a-d have been synthesized from the respective N-(2-ethylamino) naphthalimides. Their chemical alkylating activity compared with the clinical drug CCNU and an experimental compound Mitonafide indicated that they possess lower alkylating activity than CCNU and comparable activity with the latter. Their anti-tumor efficacies were assessed in vivo in two murine ascites tumors namely Sarcoma-180 (S-180) and Ehrlich ascites carcinoma (EAC) by measuring the increase in median survival times (MST) of drug treated (T) over untreated control (C) mice. CCNU and Mitonafide were used as positive controls for comparison. The representative compound 3a has displayed marginal anti-tumoral activity in these tumors. Three compounds were further screened in vitro in 4 different human tumor cell lines but no significant activity was observed in those lines. These compounds moderately inhibit the synthesis of DNA and RNA in S-180 tumor cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

substituted naphthalimides
8
alkylating activity
8
activity
5
synthesis evaluation
4
evaluation ethylnitrosoureas
4
ethylnitrosoureas substituted
4
naphthalimides anticancer
4
anticancer compounds
4
compounds ethylnitrosourea
4
ethylnitrosourea derivatives
4

Similar Publications

Cofacial electron donor-acceptor dyads exhibiting through-space charge-transfer (TSCT) characteristics are widely employed in the development of optoelectronic functional materials. The flexible molecular frameworks between the electron donor and acceptor components allow dynamic modulation of electronic coupling, influenced by excited-state structural relaxation or intermolecular interactions, thereby affecting the charge-transfer (CT) dynamics and the emission properties of TSCT states. In this work, we examine the TSCT dynamic processes of two electron donor-acceptor dyads, CzPhNI and CzPhPI formed by ortho-substitution of phenyl linkage with V-shaped flexible TSCT structures using carbazole as donor and naphthalimide or phthalimide as acceptor.

View Article and Find Full Text PDF

This work explores the use of a cross-shaped organic framework that is used as a template for the investigation of multi-functionalized chromophores. We report the design and synthesis of a universal cross-shaped building block bearing two bromines and two iodines on its peripheral positions. The template can be synthesized on a gram scale in a five-step reaction comprising an oxidative homo-coupling macro-cyclization.

View Article and Find Full Text PDF

Cu-mediated Ullmann-type coupling reactions are fundamental to organic synthesis, garnering significant academic and industrial interest since their inception. Optimizing reaction parameters, particularly temperature control, is crucial for maximizing efficiency while maintaining high yields. Bidentate ligands, such as amino acids, have demonstrated potential in facilitating these reactions at lower temperatures (<100 °C).

View Article and Find Full Text PDF

The development of novel fluorescent probes for real-time detection of cyanides (CN) in environmental and biological systems has become a significant focus in chemical sensing. Particularly, ratiometric fluorescence sensing offers a unique method for precise and quantitative detection of cyanides, even under complex conditions. We report herein the design of a new ratiometric fluorescent probe for cyanides based on modulation of Förster resonance energy transfer (FRET) coupled with novel cyanide-induced nucleophilic substitution of aromatic hydrogen (SNArH).

View Article and Find Full Text PDF

Odd-Even Law Mediated Supramolecular Chirality of Luminescent Dipeptides for Chiroptical Energy Transfer.

Small

December 2024

Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.

Inherent luminescent short peptides essentially provide opportunities to rationally manipulate supramolecular chirality and chiral luminescence. Herein, a facile protocol to construct a series of naphthalimide-appended dipeptides is reported that show ultrasound wave-activated supramolecular chirality regulated by odd-even law. Naphthalimide luminophores are conjugated to the dipeptide skeleton with variable alkyl spacers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!