Use of a nondirect-product basis for treating singularities in triatomic rotational-vibrational calculations.

Phys Chem Chem Phys

Laboratory of Molecular Spectroscopy, Institute of Chemistry, Eötvös University, P. O. Box 32, H-1518 Budapest 112, Hungary.

Published: July 2007

A technique has been developed which in principle allows the determination of the full rotational-vibrational eigenspectrum of triatomic molecules by treating the important singularities present in the triatomic rotational-vibrational kinetic energy operator given in Jacobi coordinates and the R(1) embedding. The singular term related to the diatom-type coordinate, R(1), deemed to be unimportant for spectroscopic applications, is given no special attention. The work extends a previous [J. Chem. Phys., 2005, 122, 024101] vibration-only approach and employs a generalized finite basis representation (GFBR) resulting in a nonsymmetric Hamiltonian matrix [J. Chem. Phys., 2006, 124, 014110]. The basis set to be used is obtained by taking the direct product of a 1-D DVR basis, related to R(1), with a 5-D nondirect-product basis, the latter formed by coupling Bessel-DVR functions depending on the distance-type coordinate causing the singularity, associated Legendre polynomials depending on the Jacobi angle, and rotational functions depending on the three Euler angles. The robust implicitly restarted Arnoldi method within the ARPACK package is used for the determination of a number of eigenvalues of the nonsymmetric Hamiltonian matrix. The suitability of the proposed approach is shown by the determination of the rotational-vibrational energy levels of the ground electronic state of H(3)(+) somewhat above its barrier to linearity. Convergence of the eigenenergies is checked by an alternative approach, employing a Hamiltonian expressed in Radau coordinates, a standard direct-product basis, and no treatment of the singularities.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b701911dDOI Listing

Publication Analysis

Top Keywords

nondirect-product basis
8
treating singularities
8
singularities triatomic
8
triatomic rotational-vibrational
8
chem phys
8
nonsymmetric hamiltonian
8
hamiltonian matrix
8
functions depending
8
basis
5
basis treating
4

Similar Publications

By doing calculations on the methane-water van der Waals complex, we demonstrate that highly converged energy levels and wavefunctions can be obtained using Wigner D basis functions and the Symmetry-Adapted Lanczos (SAL) method. The Wigner D basis is a nondirect product basis and, therefore, efficient when the kinetic energy operator has accessible singularities. The SAL method makes it possible to exploit symmetry to label energy levels and reduce the cost of the calculation, without explicitly using symmetry-adapted basis functions.

View Article and Find Full Text PDF

Calculation of Molecular Vibrational Spectra on a Quantum Annealer.

J Chem Theory Comput

August 2019

Department of Chemistry , Marquette University, Milwaukee , Wisconsin 53021 , United States.

Until recently molecular energy calculations using quantum computing hardware have been limited to gate-based quantum computers. In this paper, a new methodology is presented to calculate the vibrational spectrum of a molecule on a quantum annealer. The key idea of the method is a mapping of the ground state variational problem onto an Ising or quadratic unconstrained binary optimization (QUBO) problem by expressing the expansion coefficients using spins or qubits.

View Article and Find Full Text PDF

Computing vibrational energy levels of CH with a Smolyak collocation method.

J Chem Phys

October 2017

Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada.

In this paper, we demonstrate that it is possible to apply collocation to compute vibrational energy levels of a five-atom molecule using an exact kinetic energy operator (with cross terms and coordinate-dependent coefficients). This is made possible by using (1) a pruned basis of products of univariate functions; (2) a Smolyak grid made from nested sequences of grids for each coordinate; (3) a collocation method that obviates the need to solve a generalized eigenvalue problem; (4) an efficient sequential transformation between the (nondirect product) grid and the (nondirect product) basis representations; and (5) hierarchical univariate functions that make it possible to avoid storing large intermediate vectors. The accuracy of the method is confirmed by computing 500 vibrational energy levels of methane.

View Article and Find Full Text PDF

We propose a pruned multi-configuration time-dependent Hartree (MCTDH) method with systematically expanding nondirect product bases and use it to solve the time-independent Schrödinger equation. No pre-determined pruning condition is required to select the basis functions. Using about 65 000 basis functions, we calculate the first 69 vibrational eigenpairs of acetonitrile, CHCN, to an accuracy better than that achieved in a previous pruned MCTDH calculation which required more than 100 000 basis functions.

View Article and Find Full Text PDF

We demonstrate that it is possible to use a variational method to compute 50 vibrational levels of ethylene oxide (a seven-atom molecule) with convergence errors less than 0.01 cm. This is done by beginning with a small basis and expanding it to include product basis functions that are deemed to be important.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!