Comparison of optical and electrical mapping of fibrillation.

Physiol Meas

Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7575, USA.

Published: June 2007

Optical recordings with transmembrane potential (Vm)-sensitive fluorescent dye, or extracellular potential (Ve) recordings are used to map spatiotemporal patterns of cardiac excitation during ventricular fibrillation (VF). While the optical and electrical methods are accepted, there has not been a test of whether they yield equivalent excitation times during VF. Times may differ since previous results indicate optical Vm interrogates deeper than Ve. We tested whether the steepest parts of the downward deflection of the Ve and upward deflection of optical Vm are synchronized during VF. We used simultaneous coepicentral optical and electrical mapping (32 spots, 4 kHz) with translucent indium tin oxide electrodes and a laser scanner on ventricular epicardium. VF was electrically induced in arterially-perfused rabbit hearts stained with di-4-ANEPPS. For both the optical and electrical deflections, maximum magnitudes of the slopes varied over a > 4 fold range, morphologies varied and spatiotemporal distributions were nonuniform. Time differences between the steepest parts of the optical and electrical deflections were typically a few ms. Standard deviations of time differences increased for the deflections that had the smaller slopes, which was only partly due to effects of recording noise as indicated by simulations. For deflections that had slopes ranging from the steepest found at each spot to 1/4 of the steepest, the optical deflections were on average 0.7-1 ms earlier than the Ve deflections. Thus, excitation times during VF measured optically and electrically differ. Considered together with our earlier results indicating that the optical Vm interrogates deeper than Ve, the results suggest that most fibrillatory excitations occur earlier in subsurface tissue than at the heart surface.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0967-3334/28/6/009DOI Listing

Publication Analysis

Top Keywords

optical electrical
20
optical
9
electrical mapping
8
fibrillation optical
8
excitation times
8
optical interrogates
8
interrogates deeper
8
steepest parts
8
electrical deflections
8
time differences
8

Similar Publications

Photonic axion insulator.

Science

January 2025

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.

Axions, hypothetical elementary particles that remain undetectable in nature, can arise as quasiparticles in three-dimensional crystals known as axion insulators. Previous implementations of axion insulators have largely been limited to two-dimensional systems, leaving their topological properties in three dimensions unexplored in experiment. Here, we realize an axion insulator in a three-dimensional photonic crystal and probe its topological properties.

View Article and Find Full Text PDF

VARX Granger analysis: Models for neuroscience, physiology, sociology and econometrics.

PLoS One

January 2025

Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, United States of America.

Complex systems, such as in brains, markets, and societies, exhibit internal dynamics influenced by external factors. Disentangling delayed external effects from internal dynamics within these systems is often difficult. We propose using a Vector Autoregressive model with eXogenous input (VARX) to capture delayed interactions between internal and external variables.

View Article and Find Full Text PDF

Electric field stimulation directs target-specific axon regeneration and partial restoration of vision after optic nerve crush injury.

PLoS One

January 2025

Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America.

Failure of central nervous system (CNS) axons to regenerate after injury results in permanent disability. Several molecular neuro-protective and neuro-regenerative strategies have been proposed as potential treatments but do not provide the directional cues needed to direct target-specific axon regeneration. Here, we demonstrate that applying an external guidance cue in the form of electric field stimulation to adult rats after optic nerve crush injury was effective at directing long-distance, target-specific retinal ganglion cell (RGC) axon regeneration to native targets in the diencephalon.

View Article and Find Full Text PDF

Local Environment-Modulated f-f Transition in Unit-Cell-Sized Lanthanide Ultrathin Nanostructures.

ACS Nano

January 2025

Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China.

The regulation of the f-f transition is the basis of utilizing the abundant optical properties of lanthanide (Ln), of which the key is to modulate the local environment of Ln ions. Here, we constructed Eu(III)-based unit-cell-sized ultrathin nanowires (UCNWs) with red luminescence and polymer-like behavior, which appears as an ideal carrier for regulating f-f transition. The f-f transition of Eu(III) in UCNWs could be precisely regulated through various ligands.

View Article and Find Full Text PDF

Purpose: To extract conjunctival bulbar redness from standardized high-resolution ocular surface photographs of a novel imaging system by implementing an image analysis pipeline.

Methods: Data from two trials (healthy; outgoing ophthalmic clinic) were collected, processed, and used to train a machine learning model for ocular surface segmentation. Various regions of interest were defined to globally and locally extract a redness biomarker based on color intensity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!