The purpose of this study was to investigate the optimal coplanar beam directions when treating an early breast cancer with locoregional lymphatic spread with a few radiobiologically optimized intensity modulated beams. Also to determine the increase in the probability of complication-free cure with the number of beam portals and the smallest number required to perform a close to optimal treatment for this tumour site. Four test patients with stage II left-sided breast cancer were studied with heart, lung and contralateral breast as principal organs at risk. The clinical target volume consisted of the breast tissue remaining after surgery, the axillary, the internal mammary as well as the supraclavicular lymph nodes. Through an exhaustive search of all possible beam directions the most effective coplanar beams with one to four intensity modulated photon beam portals were investigated. Comparisons with uniform beam treatment techniques and up to 12 intensity modulated beams were also made. The different plans were optimized using the probability of complication-free tumour cure, P(+), as biological objective function. When using two intensity modulated beam directions three major sets of suitable directions were identified denoted by A, P and T. A corresponds to an anterior oblique pair of beams around 25 degrees and 325 degrees , P is a perpendicular lateral pair at around 50 degrees and 130 degrees whereas T is a more conventional tangential pair at around 155 degrees and 300 degrees . Interestingly, these configurations identify simply three major effective beam directions namely at 30 degrees +/-20 degrees , 145 degrees +/-20 degrees and 310 degrees +/-15 degrees . For the three intensity modulated beam technique a combination of these three effective beam directions generally covered the global maximum of the probability of complication-free tumour control. The improvement in complication-free cure probability with two optimally selected intensity modulated beams is around 10% when compared to a uniform beam technique with three to four beam portals. This increase is mainly due to a reduction by almost 1% in the probability of injury to the heart and an increase of 6% in the probability of local tumour control. When three or four biologically optimized beam portals are used a further increase in the probability of complication-free cure of about 6% can often be obtained. This improvement is caused by a small decrease in the probability of injury to the heart, left lung and other surrounding normal tissue, as well as a slight further increase in the probability of tumour control. The increase in the treatment outcome is minimal when more than four intensity modulated beams are employed. A small increase in dose homogeneity in the target volume and a slight decrease in the normal tissue volume receiving high dose may be seen, but without appreciably improving the complication-free cure probability. For a stage II breast cancer, three and in more complex cases four optimally oriented beams are sufficient to reach close to the maximum probability of complication-free tumour control when biologically optimized intensity modulated dose delivery is used. Angle of incidence optimization may then be advantageous starting from the given most effective three beam directions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1120-1797(06)80005-0DOI Listing

Publication Analysis

Top Keywords

intensity modulated
32
beam directions
28
probability complication-free
20
breast cancer
16
modulated beams
16
increase probability
16
complication-free cure
16
beam portals
16
tumour control
16
beam
13

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!