A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The impact of nitrite and antioxidants on ultraviolet-A-induced cell death of human skin fibroblasts. | LitMetric

The impact of nitrite and antioxidants on ultraviolet-A-induced cell death of human skin fibroblasts.

Free Radic Biol Med

Department of Plastic and Reconstructive Surgery, Hand Surgery, and Burn Center, University Hospital of the RWTH-Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany.

Published: September 2007

Nitrite (NO(2)(-)) occurs ubiquitously in biological fluids such as blood and sweat. Ultraviolet A-induced nitric oxide formation via decomposition of cutaneous nitrite, accompanied by the production of reactive oxygen (ROS) or nitrogen species (RNS), represents an important source for NO in human skin physiology. Examining the impact of nitrite and the antioxidants glutathione (GSH), Trolox (TRL), and ascorbic acid (ASC) on UVA-induced toxicity of human skin fibroblasts (FB) we found that NO(2)(-) concentration-dependently enhances the susceptibility of FB to the toxic effects of UVA by a mechanism comprising enhanced induction of lipid peroxidation. While ASC completely protects FB cultures from UVA/NO(2)(-)-induced cell damage, GSH or TRL excessively enhances UVA/NO(2)(-)-induced cell death by a mechanism comprising nitrite concentration-dependent TRL radical formation or GSH-derived oxidative stress. Simultaneously, in the presence of GSH or TRL the mode of UVA/NO(2)(-)-induced cell death changes from apoptosis to necrosis. In summary, during photodecomposition of nitrite, ROS or RNS formation may act as strong toxic insults. Although inhibition of oxidative stress by NO and other antioxidants represents a successful strategy for protection from UVA/NO(2)(-)-induced injuries, GSH and TRL may nitrite-dependently aggravate the injurious impact by TRL or GSH radical formation, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2007.05.030DOI Listing

Publication Analysis

Top Keywords

cell death
12
human skin
12
uva/no2--induced cell
12
gsh trl
12
impact nitrite
8
nitrite antioxidants
8
skin fibroblasts
8
mechanism comprising
8
radical formation
8
oxidative stress
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!