Our aim was to investigate whether a defect in vesicular monoamine transporter-2 (VMAT2) activities would affect dopaminergic cell functions or not. We examined mesencephalon dopaminergic cultures prepared from VMAT2 wild-type, heterozygous or homozygous knockout (KO) 14-day-old mouse fetuses to determine the number of tyrosine hydroxylase (TH)-positive cells and dopamine transporter activity. The number of TH-positive cells remained unchanged in the VMAT2-KO cultures. Of interest, the dopamine transporter activity in the homozygous cells was significantly decreased, but not in the heterozygous cells, suggesting that complete deletion of VMAT2 inhibited dopamine transporter function. Furthermore, dopamine transporter activity was prominently decreased in the synaptosomal fraction of neonatal homozygous VMAT2-KO mice compared with that of wild-type/heterozygous VMAT2-KO ones, indicating that VMAT2 activity might be one of the factors regulating dopamine transporter activities. To test this possibility, we used reserpine, a VMAT2 inhibitor. Reserpine (1muM) decreased dopamine transporter activity (approx. 50%) in wild-type and heterozygous VMAT2-KO cultures but not in homozygous ones, indicating that blockade of VMAT2 activity reduced dopamine transporter activity. To investigate possible mechanisms underlying the decreased dopamine transporter activity in VMAT2-KO mice, we measured dopamine transporter activities after 24-48h exposure of primary cultures of mesencephalic neurons to dopamine receptor antagonists, PKC inhibitor, PI(3)K inhibitor, and l-DOPA. Among these drugs, l-DOPA slightly reduced the dopamine transporter activities of all genotypes, but the other drugs could not. Since the ratios of reduction in dopamine transporter activity of each genotype treated with l-DOPA were similar, substrate inhibition of dopamine transporters was not the main mechanism underlying the reduced dopamine transporter activity due to genetic deletion of VMAT2. Our results demonstrate that genetic deletion of VMAT2 did not induce immediate cell death but did markedly inhibit dopamine transporter activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2007.06.022DOI Listing

Publication Analysis

Top Keywords

dopamine transporter
56
transporter activity
40
dopamine
16
transporter
14
genetic deletion
12
activity
12
deletion vmat2
12
transporter activities
12
reduced dopamine
12
vmat2
9

Similar Publications

Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, whether similar biological processes occur during healthy aging, but to a lesser degree, remains unclear. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans.

View Article and Find Full Text PDF

Amphetamines (AMPHs) are psychostimulants commonly used for the treatment of neuropsychiatric disorders. They are also misused (AMPH use disorder; AUD), with devastating outcomes. Recent studies have implicated dysbiosis in the pathogenesis of AUD.

View Article and Find Full Text PDF

Background: This study investigates the protective properties of melatonin in an Parkinson's disease (PD) model, focusing on the underlying mechanisms involving heat shock proteins (HSPs).

Methods: Twelve adult male C57BL/6 mice were randomly divided into four groups (normal control, melatonin control, Parkinson's model, and melatonin treatment; = 3 per group) and housed in a single cage. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was injected intraperitoneally in the Parkinson's model and treatment groups to establish a subacute PD model, while controls received saline.

View Article and Find Full Text PDF

Identification of N,N-dimethylpentylone (DMP) in counterfeit "Ecstasy" and "Molly" tablets poses risk to public health due to its adverse effects. Little information is available regarding the pharmacological activity or relevant blood or tissue concentrations of DMP, and even less is known about other structurally related beta-keto methylenedioxyamphetamine analogues on recreational drug markets, such as N-propyl butylone. Here, a novel toxicological assay utilizing liquid chromatography-tandem quadrupole mass spectrometry (LC-QQQ-MS) was developed and validated for the quantitation of DMP and five related synthetic cathinones (eutylone, pentylone, N-ethyl pentylone (NEP), N-propyl butylone, and N-cyclohexyl butylone), with chromatographic resolution from isomeric variants and quantitation performed by standard addition.

View Article and Find Full Text PDF

Genetic and neurochemical profiles underlying cortical morphometric vulnerability to Parkinson's disease.

Brain Res Bull

January 2025

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:

Background: Increasing evidence has documented cortical involvement at all stages of PD. The local vulnerabilities within certain brain regions in PD have been previously demonstrated, whereas its underlying genetic and neurochemical factors remain unclear. This study aims to investigate the spatial spectrum of cortical atrophy in Parkinson's disease (PD) and link these variances in gray matter properties and curvature respectively to putative molecular pathways and neurotransmitter factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!