Microemulsion samples of an ethoxylated polymethylsiloxane surfactant, water, and 1-dodecanol or 1-decanol as the oil component are investigated using pulsed field gradient NMR to determine the components' self-diffusion coefficients. It is demonstrated that the structure of the liquids depends heavily on their composition, in that, for low water content, the structure is water-in-oil (w/o), gradually changing to a bicontinous structure in a concentration range ca. 40-60 wt % water, and, finally, to an oil-in-water (o/w) structure for more water rich samples. In the water poor samples, the surfactant molecules apparently do not form extended aggregates (inverted micelles). In the water rich samples, the surfactant and oil (if present) form ordinary micelles, and it is demonstrated for the binary water/surfactant system that the micelles are spherical at very low surfactant concentrations and grow into oblate (disk) shaped aggregates at surfactant concentrations above ca. 5 wt %. From density and viscosity measurements of binary mixtures of oil (1-decanol) and surfactant, it is demonstrated that these components form solutions that are not far from ideal.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp073035vDOI Listing

Publication Analysis

Top Keywords

ethoxylated polymethylsiloxane
8
polymethylsiloxane surfactant
8
surfactant water
8
water rich
8
rich samples
8
samples surfactant
8
surfactant concentrations
8
surfactant
7
water
7
structures microemulsion
4

Similar Publications

Microemulsion samples of an ethoxylated polymethylsiloxane surfactant, water, and 1-dodecanol or 1-decanol as the oil component are investigated using pulsed field gradient NMR to determine the components' self-diffusion coefficients. It is demonstrated that the structure of the liquids depends heavily on their composition, in that, for low water content, the structure is water-in-oil (w/o), gradually changing to a bicontinous structure in a concentration range ca. 40-60 wt % water, and, finally, to an oil-in-water (o/w) structure for more water rich samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!