The preparation, characterization, and properties of poly(methyl methacrylate) (PMMA)/multi-walled carbon nanotubes (MWCNTs) nanocomposites are described. Nanocomposites have been prepared by melt-blending in a batch mixer. Both unmodified and surface modified MWCNTs have been used for the nanocomposites preparation. Using both unmodified and modified MWCNTs, the effect of surface modification in nanocomposites is investigated by focusing on three major aspects: dispersion characteristics, mechanical properties, and electrical conductivity measurements. Dispersion of the MWCNTs in the PMMA matrix is examined by scanning and transmission electron microscopy that revealed a homogeneous distribution-dispersion of MWCNTs in the PMMA matrix for both unmodified and modified MWCNTs. Thermomechanical behavior is studied by dynamic mechanical analyzer and results showed a substantial improvement in the mechanical properties of PMMA in conjunction to an increase in the elastic behavior. The tensile properties of neat PMMA moderately improved after nanocomposites preparation with both modified and unmodified MWCNTs, however, electrical conductivity of neat PMMA significantly improved after nanocomposites preparation with 2 wt% unmodified MWCNTs. For example, the through plane conductivity increased from 3.6 x 10(-12) S x cm(-1) for neat PMMA to 3.6 x 10(-9) S x cm(-1) for nanocomposite. The various property measurements have been conducted and results have shown that, in overall, surface modifications have very little or no effect on final properties of neat PMMA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2007.419 | DOI Listing |
Int J Nanomedicine
December 2024
Shanxi Medical University School and Hospital of Stomatology; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, 030001, People's Republic of China.
Purpose: During fixed orthodontic treatment, oral hygiene is difficult to ensure and can easily lead to an imbalance in the oral micro-ecological balance. In this study, based on the adhesive properties of polydopamine (PDA) and the good antimicrobial and remineralization properties of carboxymethyl chitosan (CMC) and xylitol (Xy), new nanocomposites with both antimicrobial and remineralization capabilities were prepared to coat on orthodontic brackets.
Methods: Composite carbon dots (CDs) were synthesized using carboxymethyl chitosan and xylitol, we characterized them and the antimicrobial properties of the CMC-Xy-CDs were investigated by co-cultivation with S.
Sci Rep
December 2024
Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, 34110, Qatar.
This study aims to modify raw zeolite with metal oxide nanocomposites to remove nickel (Ni) ions from synthetic wastewater. Novel zeolite-doped magnesium oxide (MgO), iron oxide (FeO), and zinc oxide (ZnO) nanocomposites were synthesized by hydrothermal-calcination methods. The novel zeolite-doped metal oxide nanocomposites were used as adsorbents to remove Ni (II) ions from synthetic wastewater.
View Article and Find Full Text PDFSci Rep
December 2024
ICAR-Indian Grassland and Fodder Research Institute, Jhansi, 284 003, India.
Sugarcane is a major industrial crop highly susceptible to parasitic weed (Striga spp.), causing a 38% reduction in cane yield due to a longer lag phase of 20-40 days, and wider spacing. Herbicides with a longer retention and slow-release nature could allow Striga seeds to germinate and be killed before attaching to the host.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Physics, Faculty of Science, Razi University, Kermanshah, Iran.
Novel functional materials possessing the capability to attenuate electromagnetic energy are being increasingly incorporated into home decor as concerns over excessive electromagnetic radiation pollution continue to grow. The properties of magnetism and dielectricity in the flexible peanut shell/CoFeO/reduced graphene oxide/polyvinyl alcohol (PS/CF/(RGO)/PVA) nanocomposites can be finely tuned by adjusting the amount of RGO in the mixture. An examination of the composite's absorption capabilities revealed a direct link between higher RGO content and enhanced absorption.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Agricultural Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
This study aims to explore the redispersibility of dehydrated nanocellulose with p-toluenesulfonic acid (p-TsOH) fractionated lignin as an eco-friendly and cost-effective capping agent, to cope with the challenge of irreversible agglomeration and thus loss of nanoscale of nanocellulose upon dehydration. The intermixing of nanocellulose and p-TsOH fractionated lignin was achieved using an aqueous ethanol solution as the medium and films of lignin-blending cellulose nanofibers (L + CNF) with excellent redispersing properties were obtained after facile air-drying. With 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!