Entomopathogenic nematodes cannot be considered only as parasitic organisms. With dead Galleria mellonella larvae, we demonstrated that these nematodes use scavenging as an alternative survival strategy. We consider scavenging as the ability of entomopathogenic nematodes to penetrate, develop and produce offspring in insects which have been killed by causes other than the nematode-bacteria complex. Six Steinernema and two Heterorhabditis species scavenged but there were differences among them in terms of frequency of colonisation and in the time after death of G. mellonella larvae that cadavers were penetrated. The extremes of this behaviour were represented by Steinernema glaseri which was able to colonise cadavers which had been freeze-killed 240 h earlier and Heterorhabditis indica which only colonised cadavers which had been killed up to 72 h earlier. Also, using an olfactometer, we demonstrated that entomopathogenic nematodes were attracted to G. mellonella cadavers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpara.2007.06.003 | DOI Listing |
Mol Phylogenet Evol
January 2025
Laboratory of Diagnosis and Integrated Management of Plant Bio-Aggressors. University of Parakou, BP123 Parakou, Borgou, Benin.
Multigene, genus-wide phylogenetic studies have uncovered the limited taxonomic resolution power of commonly used gene markers, particularly of rRNA genes, to discriminate closely related species of the nematode genus Heterorhabditis. In addition, conflicting tree topologies are often obtained using the different gene markers, which limits our understanding of the phylo- and co-phylogenetic relationships and biogeography of the entomopathogenic nematode genus Heterorhabditis. Here we carried out phylogenomic reconstructions using whole nuclear and mitochondrial genomes, and whole ribosomal operon sequences, as well as multiple phylogenetic reconstructions using various single nuclear and mitochondrial genes.
View Article and Find Full Text PDFInsects
December 2024
Department of Entomology, Rutgers University, 96 Lipman Dr., New Brunswick, NJ 08901, USA.
White grubs possess natural defense mechanisms against entomopathogenic nematodes (EPNs). Hence, EPN isolates that naturally infect white grubs tend to be among the most effective biological control agents of white grubs. We tested the virulence of four EPN isolates recently isolated from infected white grubs in turfgrass areas in central New Jersey, USA against third-instar larvae of , , and , which are pests of turfgrass and ornamental plants in the northeastern USA.
View Article and Find Full Text PDFInsects
December 2024
School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK.
The large pine weevil ( L.) is a major pest in European and Asian coniferous forests, particularly in managed plantations where clear-felling practices create ideal conditions for its population growth. Traditional management practices involving synthetic insecticides have limited efficacy in terms of reducing pest populations and pose environmental risks.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Department of Plant Protection, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran.
This study aimed to achieve two main objectives: first, to determine whether the virulence factors of symbiotic bacteria of entomopathogenic nematodes (EPNs) against insect hosts are cell-associated or secreted, and to shed light on the underlying mechanisms of pathogenicity; and second, to identify and evaluate the standalone pathogenicity of symbiotic bacteria associated with entomopathogenic nematodes against Tenebrio molitor. Three bacterial species, Xenorhabdus nematophila (A41, SC, A18 and SF), Photorhabdus kayaii, and P. thracensis, were isolated and characterized via phylogenetic analysis of 16S-rRNA and gyrB genes.
View Article and Find Full Text PDFJ Econ Entomol
December 2024
Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece.
The lesser mealworm Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae), an important insect pest of stored-product commodities and poultry production systems, is regarded among the most difficult species to control. It has developed resistance to many chemical insecticides, and though various cultural and biological methods have been assessed and identified as possible factors for its control, none are currently implemented. Entomopathogenic nematodes are often successfully employed as alternative to chemicals biocontrol agents of various insect species, including pests of stored products; nevertheless, their evaluation as potential biocontrol factors of the lesser mealworm is not efficiently scrutinized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!