Regulation of mammalian mtDNA gene expression is critical for altering oxidative phosphorylation capacity in response to physiological demands and disease processes. The basal machinery for initiation of mtDNA transcription has been molecularly defined, but the mechanisms regulating its activity are poorly understood. In this study, we show that MTERF3 is a negative regulator of mtDNA transcription initiation. The MTERF3 gene is essential because homozygous knockout mouse embryos die in midgestation. Tissue-specific inactivation of MTERF3 in the heart causes aberrant mtDNA transcription and severe respiratory chain deficiency. MTERF3 binds the mtDNA promoter region and depletion of MTERF3 increases transcription initiation on both mtDNA strands. This increased transcription initiation leads to decreased expression of critical promoter-distal tRNA genes, which is possibly explained by transcriptional collision on the circular mtDNA molecule. To our knowledge, MTERF3 is the first example of a mitochondrial protein that acts as a specific repressor of mammalian mtDNA transcription initiation in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2007.05.046DOI Listing

Publication Analysis

Top Keywords

mtdna transcription
20
transcription initiation
16
mammalian mtdna
12
mtdna
9
mterf3 negative
8
negative regulator
8
expression critical
8
initiation mtdna
8
mterf3
7
transcription
7

Similar Publications

Single-cell transcriptomic analysis reveals characteristic feature of macrophage reprogramming in liver Mallory-Denk bodies pathogenesis.

J Transl Med

January 2025

The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; The Qingyuan Affiliated Hospital of Guangzhou Medical University, Qingyuan People's hospital, Qingyuan, China.

Chronic liver diseases are highly linked with mitochondrial dysfunction and macrophage infiltration. Mallory-Denk bodies (MDBs) are protein aggregates associated with hepatic inflammation, and MDBs pathogenesis could be induced in mice by feeding 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). Here, we investigate the macrophage heterogeneity and the role of macrophage during MDBs pathogenesis on DDC-induced MDBs mouse model by single-nucleus RNA sequencing (snRNA-seq).

View Article and Find Full Text PDF

Diabetic retinopathy, a microvascular complication of diabetes, is the leading cause of blindness in adults, but the molecular mechanism of its development remains unclear. Retinal mitochondrial DNA is damaged and hypermethylated, and mtDNA-encoded genes are downregulated. Expression of a long noncoding RNA (larger than 200 nucleotides, which does not translate into proteins), encoded by mtDNA, cytochrome B (Lnc), is also downregulated.

View Article and Find Full Text PDF

The levels of biogenesis of lysosome organelles complex 1 subunit 1 (BLOC1S1) control mitochondrial and endolysosome organelle homeostasis and function. Reduced fidelity of these vacuolar organelles is increasingly being recognized as important in instigating cell-autonomous immune cell activation. We reasoned that exploring the role of BLOC1S1 in CD4 T cells, may further advance our understanding of regulatory events linked to mitochondrial and/or endolysosomal function in adaptive immunity.

View Article and Find Full Text PDF

Roles of oolong tea extracts in the protection against Staphylococcus aureus infection in Caenorhabditis elegans.

J Food Sci

January 2025

Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China.

Oolong tea, a popular traditional Chinese tea, possesses various bioactivities, but little is known about its roles in the protection against pathogens, such as Staphylococcus aureus, in vivo. This study investigated the roles of the water-soluble oolong tea extracts (OTE) on S. aureus infection in Caenorhabditis elegans, a promising model to study the host-microbe interactions in vivo.

View Article and Find Full Text PDF

3-methyl-4-nitrophenol disturbs the maternal-to-zygotic transition of early embryos by damaging mitochondrial function and histone modification.

Ecotoxicol Environ Saf

January 2025

Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China. Electronic address:

3-methyl-4-nitrophenol (PNMC), a chemical prevalent in various industries for drug, dye, and leather production, also serves as a primary byproduct of organophosphate insecticides. Despite its global recognition as an endocrine disruptor with documented reproductive toxicity, its detrimental impact on preimplantation embryonic development has yet to be thoroughly investigated. In this study, through the in vitro culture of mice embryos, it was initially observed that even low concentrations of PNMC exposure led to a significant reduction in blastocyst formation and a sharp decline in the ratio of inner cell mass within the blastocysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!