Reorganization of the actin cytoskeleton and contraction of actomyosin play pivotal roles in controlling cell shape changes and motility in epithelial morphogenesis. Dephosphorylation of the myosin regulatory light chain (MRLC) by myosin phosphatase is one of the key events involved. Allelic combinations producing intermediate strength mutants of the Drosophila myosin-binding subunit (DMBS) of myosin phosphatase showed imaginal discs with multilayered disrupted morphologies, and extremely mislocated cells, suggesting that DMBS is required to maintain proper epithelial organization. Clonal analyses revealed that DMBS null mutant cells appear to retract basally and localization of apical junction markers such as DE-cadherin is indetectable in most cells, whereas phosphorylated MRLC and F-actin become heavily concentrated apically, indicating misconfiguration of the apical cytoskeleton. In agreement with these findings, DMBS was found to concentrate at the apical domain suggesting its function is localized. Phenotypes similar to DMBS mutants including increased migration of cells were obtained by overexpressing the constitutive active form of MRLC or Rho-associated kinase signifying that the phenotypes are indeed caused through activation of Myosin II. The requirement of DMBS for the integrity of static epithelial cells in imaginal discs suggests that the regulation of Myosin II by DMBS has a role more general than its previously demonstrated functions in morphogenetic events.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2007.06.021DOI Listing

Publication Analysis

Top Keywords

myosin phosphatase
12
imaginal discs
8
dmbs
7
myosin
6
cells
6
essential roles
4
roles myosin
4
phosphatase maintenance
4
epithelial
4
maintenance epithelial
4

Similar Publications

Background: Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.

View Article and Find Full Text PDF

Effect of cardiomyocyte-specific lipid phosphate phosphatase 3 overexpression on high-fat diet-induced cardiometabolic dysfunction in mice.

Am J Physiol Heart Circ Physiol

January 2025

Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, 355 Campus Ring Road, Saint John, New Brunswick, E2L 4L5, Canada.

Lipid phosphate phosphatase 3 (LPP3) is a membrane-bound enzyme that hydrolyzes lipid phosphates including the bioactive lipid, lysophosphatidic acid (LPA). Elevated circulating LPA production and cellular LPA signaling are implicated in obesity-induced metabolic and cardiac dysfunction. Deletion of LPP3 in the cardiomyocyte increases circulating LPA levels and causes heart failure and mitochondrial dysfunction in mice.

View Article and Find Full Text PDF

In Obesity, Esophagogastric Junction Fat Impairs Esophageal Barrier Function and Dilates Intercellular Spaces via Hypoxia-Inducible Factor 2α.

Gastroenterology

December 2024

Department of Medicine, Center for Esophageal Diseases, Baylor University Medical Center, Dallas, Texas; Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, Texas. Electronic address:

Background & Aims: Dilated intercellular space in esophageal epithelium, a sign of impaired barrier function, is a characteristic finding of gastroesophageal reflux disease that is also found in obese patients without gastroesophageal reflux disease. We explored molecular mechanisms whereby adipose tissue products might impair esophageal barrier integrity.

Methods: Cultures of visceral fat obtained during foregut surgery from obese and nonobese patients were established.

View Article and Find Full Text PDF

Dysregulation of the expression levels and the activity of kinases/phosphatases is an intrinsic hallmark of tumor transformation and progression, as either as a primary cause or consequence. The myosin phosphatase (MP)/protein arginine methyltransferase 5 (PRMT5)/histone (H4) pathway is an oncogenic signaling pathway downregulating the gene expression of tumor suppressors. However, the upstream regulators of the pathway are unknown.

View Article and Find Full Text PDF

[Molecular mechanism of Xiangsha Liujunzi Decoction in treating chronic atrophic gastritis based on transcriptome sequencing technology].

Zhongguo Zhong Yao Za Zhi

September 2024

Key Laboratory of Traditional Chinese Medicine for Prevention and Control of Regional High Incidence Diseases in Ningxia,Ministry of Education, Ningxia Medical University Yinchuan 750004, China.

Based on transcriptomics technology, this study investigated the molecular mechanisms of Xiangsha Liujunzi Decoction in treating chronic atrophic gastritis(CAG), which were confirmed through experimental validation. The CAG rat model was built by the MNNG composite multi-factor method, followed by a 90-day administration of Xiangsha Liujunzi Decoction. The study measured the rat body mass and 3-hour food intake in each group and observed the pathological changes in gastric tissue using HE staining.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!