In this study, we demonstrated the efficiency and feasibility of a gene therapy protocol against HIV infection using the antiviral effects of IFN-beta expression. Lentiviral vectors containing the human or the simian IFN-beta sequences under the influence of the murine moderate H2-kb promoter were constructed. To examine the capacity of IFN-beta to inhibit the replication of HIV in human CD4(+) cells, a transduction protocol permitting to efficiently transduce CD4(+) cells or PBMC (85+/-12% of CD4(+)-transduced cells) with a moderate expression of IFN-beta was developed. Results indicate that enforced expression of IFN-beta has no negative effects in terms of apoptosis and proliferation. In human CD4(+) cells, it drastically inhibits (up to 99.9%) replication after challenging with different strains of HIV-1. The expression of exogenous IFN-beta leads to an amplification of the CD4(+) cells (11-fold) and to a drastic decrease of the p24 protein. Micro-array analyses indicated that antiviral effect of IFN-beta could be due to a major regulation of the inflammatory response. These results are encouraging for the development of a clinical study of gene therapy against AIDS using IFN-beta.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2007.06.036 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!