Human NT cells derived from the NTera2/D1 cell line express a dopaminergic phenotype making them an attractive vehicle to supply dopamine to the depleted striatum of the Parkinsonian patient. In vitro, hNT neurons express tyrosine hydroxylase (TH), depending on the length of time they are exposed to retinoic acid. This study compared two populations of hNT neurons that exhibit a high yield of TH+ cells, MI-hNT and DA-hNT. The MI-hNT and DA-hNT neurons were intrastriatally transplanted into the 6-OHDA hemiparkinsonian rat. Amelioration in rotational behavior was measured and immunohistochemistry was performed to identify surviving hNT and TH+ hNT neurons. Results indicated that both MI-hNT and DA-hNT neurons can survive in the striatum, however, neither maintained their dopaminergic phenotype in vivo. Other strategies used in conjunction with hNT cell replacement are likely needed to enhance and maintain the dopamine expression in the grafted cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2007.05.025 | DOI Listing |
Mol Ther
October 2024
Department of Genetics and Development and Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY, USA. Electronic address:
Effective gene therapy for gain-of-function or dominant-negative disease mutations may require eliminating expression of the mutant copy together with wild-type replacement. We evaluated such a knockdown-replace strategy in a mouse model of DNM1 disease, a debilitating and intractable neurodevelopmental epilepsy. To challenge the approach robustly, we expressed a patient-based variant in GABAergic neurons-which resulted in growth delay and lethal seizures evident by postnatal week three-and delivered to newborn pups an AAV9-based vector encoding a ubiquitously expressed, Dnm1-specific interfering RNA (RNAi) bivalently in tail-to-tail configuration with a neuron-specific, RNAi-resistant, codon-optimized Dnm1 cDNA.
View Article and Find Full Text PDFFront Physiol
June 2022
Department of Engineering Science, The University of Auckland, Auckland, New Zealand.
Networks of neurons are typically studied in the field of Criticality. However, the study of astrocyte networks in the brain has been recently lauded to be of equal importance to that of the neural networks. To date criticality assessments have only been performed on networks astrocytes from healthy rats, and astrocytes from cultured dissociated resections of intractable epilepsy.
View Article and Find Full Text PDFNat Biomed Eng
June 2022
General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA.
Peripheral neurons that sense glucose relay signals of glucose availability to integrative clusters of neurons in the brain. However, the roles of such signalling pathways in the maintenance of glucose homoeostasis and their contribution to disease are unknown. Here we show that the selective activation of the nerve plexus of the hepatic portal system via peripheral focused ultrasound stimulation (pFUS) improves glucose homoeostasis in mice and rats with insulin-resistant diabetes and in swine subject to hyperinsulinemic-euglycaemic clamps.
View Article and Find Full Text PDFJ Neural Eng
August 2021
Department of Engineering Science, University of Auckland, Auckland, New Zealand and the MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
Platinum nanograss (Ptng) has been demonstrated as an excellent coating to increase the electrode roughness and reduce the impedance of microelectrodes for neural recording. However, the optimisation of the original potentiostatic electrochemical deposition (PSED) method has been performed by the original group only and novalidation of functionality was reported.This study firstly reinvestigates the use of the PSED method for Ptng coating at different charge densities which highlights non-uniformities in the edges of the microelectrodes for increasing deposition charge densities, leading to a decreased impedance which is in fact an artefact.
View Article and Find Full Text PDFJ Neural Eng
April 2021
Department of Engineering Science, The University of Auckland, Auckland, New Zealand.
Cell patterning approaches commonly employed to direct the cytoplasmic outgrowth from cell bodies have been via chemical cues or biomaterial tracks. However, complex network designs using these approaches create problems where multiple tracks lead to manifold obstructions in design. A less common but alternative cell patterning modality is to geometrically design the nodes to project the cytoplasmic processes into a specific direction, thus, removing the need for tracks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!