Functional analyses of the Physcomitrella patens phytochromes in regulating chloroplast avoidance movement.

Plant J

Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji, Tokyo 192-0397, Japan.

Published: September 2007

Red light-induced chloroplast movement in Physcomitrella patens (Pp) is mediated by dichroic phytochrome in the cytoplasm. To analyze the molecular function of the photoreceptor in the cytoplasm, we developed a protoplast system in which chloroplast photomovement was exclusively dependent on the expression of phytochrome cDNA constructs introduced by polyethylene glycol (PEG) transformation. YFP was fused to the phytochrome constructs and their expression was detected by fluorescence. The chloroplast avoidance response was induced in the protoplasts expressing a YFP fusion of PHY1-PHY3, but not of PHY4 or YFP alone. Phy::yfp fluorescence was detected in the cytoplasm. No change in the location of phy1::yfp or phy2::yfp was revealed before and after photomovement. When phy1::yfp and phy2::yfp were targeted to the nucleus by fusing a nuclear localization signal to the constructs, red light avoidance was not induced. To determine the domains of PHY2 essential for avoidance response, various partially-deleted PHY2::YFP constructs were tested. The N-terminal extension domain (NTE) was found to be necessary but the C-terminal histidine kinase-related domain (HKRD) was dispensable. An avoidance response was not induced under expression of phytochrome N-terminal half domain [deleting both the PAS (Per, Arnt, Sim)-related domain (PRD) and HKRD]. GUS fusion of this N-terminal half domain, reported to be fully functional in Arabidopsis for several phyA- and phyB-regulated responses was not effective in chloroplast avoidance movement. Domain requirement and GUS fusion effect were also confirmed in PHY1. These results indicate that Pp phy1-Pp phy3 in the cytoplasm mediate chloroplast avoidance movement, and that NTE and PRD, but not HKRD, are required for their function.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-313X.2007.03202.xDOI Listing

Publication Analysis

Top Keywords

chloroplast avoidance
16
avoidance movement
12
avoidance response
12
physcomitrella patens
8
expression phytochrome
8
response induced
8
phy1yfp phy2yfp
8
n-terminal half
8
half domain
8
gus fusion
8

Similar Publications

The green microalga Chlamydomonas reinhardtii is a promising host organism for the production of valuable compounds. Engineering the Chlamydomonas chloroplast genome offers several advantages over the nuclear genome, including targeted gene insertion, lack of silencing mechanisms, potentially higher protein production due to multiple genome copies and natural substrate abundance for metabolic engineering. Tuneable expression systems can be used to minimize competition between heterologous production and host cell viability.

View Article and Find Full Text PDF

Array of metabolic pathways in a kleptoplastidic foraminiferan protist supports chemoautotrophy in dark, euxinic seafloor sediments.

ISME J

January 2025

Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States.

Investigations of the metabolic capabilities of anaerobic protists advances our understanding of the evolution of eukaryotic life on Earth and for uncovering analogous extraterrestrial complex microbial life. Certain species of foraminiferan protists live in environments analogous to early Earth conditions when eukaryotes evolved, including sulfidic, anoxic and hypoxic sediment porewaters. Foraminifera are known to form symbioses as well as to harbor organelles from other eukaryotes (chloroplasts), possibly bolstering the host's independence from oxygen.

View Article and Find Full Text PDF

In the accumulation response, chloroplasts move toward weak blue light (BL) to maximize photosynthetic efficiency; in the avoidance response, they move away from strong BL to reduce photodamage. The BL receptor kinase phototropin (phot) mediates these chloroplast relocation responses, and the chloroplast relocation response requires phot kinase activity. Upon receiving BL, phot undergoes autophosphorylation; however, the molecular mechanisms that regulate chloroplast relocation through phot autophosphorylation remain unclear.

View Article and Find Full Text PDF

The existence of an efficient inducible transgene expression system is a valuable tool in recombinant protein production. The synthetic theophylline-responsive riboswitch (theo.RS) can be replaced in the 5[Formula: see text] untranslated region of an mRNA and control the translation of downstream gene in chloroplasts in response to the binding with a ligand molecule, theophylline.

View Article and Find Full Text PDF

Light-regulated chloroplast morphodynamics in a single-celled dinoflagellate.

Proc Natl Acad Sci U S A

November 2024

Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam 1098XH, The Netherlands.

Photosynthetic algae play a significant role in oceanic carbon capture. However, their performance is constantly challenged by fluctuations in environmental light conditions. While phototaxis is a common strategy to cope with such fluctuations, nonmotile species must adopt alternative mechanisms to avoid light-induced damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!