AI Article Synopsis

  • IDO (Indoleamine 2,3-dioxygenase) is an enzyme linked to neurological disorders, induced by IFN-gamma, which causes neurotoxicity and inhibits immune response through tryptophan depletion.
  • IL-4 and IL-13 were found to enhance the expression of IDO in microglia while downregulating another enzyme, tryptophanyl-tRNA synthetase (WRS), indicating a complex interaction.
  • The study highlights the distinct regulatory pathways for IDO and WRS, suggesting their potential roles in managing immune response in neurological conditions.

Article Abstract

Indoleamine 2,3-dioxygenase (IDO), a tryptophan catabolizing enzyme, has been implicated in the pathogenesis of various neurological disorders. IDO expression is induced by IFN-gamma and leads to neurotoxicity by generating quinolinic acid. Additionally, it inhibits the immune response through both tryptophan depletion and generating other tryptophan catabolites. IL-4 and IL-13 have been shown to control IDO expression by antagonizing the effects of IFN-gamma in different cell types. Here, we investigated the effects of these cytokines on IDO expression in microglia. Interestingly, we observed that both IL-4 and IL-13 greatly enhanced IFN-gamma-induced IDO expression. However, tryptophanyl-tRNA synthetase (WRS), which is coinduced with IDO by IFN-gamma, is downregulated by IL-4 and IL-13. The effect of IL-4 and IL-13 was independent of STAT-6. Modulation of IDO but not WRS was eliminated by inhibition of protein phosphatase 2A (PP2A) activity. The phosphatidylinositol 3-kinase (PI3K) pathway further differentiated the regulation of these two enzymes, as inhibiting the PI3K pathway eliminated IFN-gamma induction of IDO, whereas such inhibition greatly enhanced WRS expression. These findings show discordance between modulations of expression of two distinct enzymes utilizing tryptophan as a common substrate, and raise the possibility of their involvement in regulating immune responses in various neurological disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2486430PMC
http://dx.doi.org/10.1002/glia.20544DOI Listing

Publication Analysis

Top Keywords

ido expression
16
il-4 il-13
16
ifn-gamma-induced ido
8
ido wrs
8
wrs expression
8
expression microglia
8
ido
8
neurological disorders
8
greatly enhanced
8
pi3k pathway
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!