We describe a candidate gene approach for associating SNPs with variation in flowering time and water-soluble carbohydrate (WSC) content and other quality traits in the temperate forage grass species Lolium perenne. Three analysis methods were used, which took the significant population structure into account. First, a linear mixed model was used enabling a structured association analysis to be incorporated with the nine populations identified in the structure analysis as random variables. Second, a within-population analysis of variance was performed. Third, a tree-scanning method was used, in which haplotype trees were associated with phenotypes on the basis of inferred haplotypes. Analysis of variance within populations identified several associations between WSC, nitrogen (N), and dry matter digestibility with allelic variants within an alkaline invertase candidate gene LpcAI. These associations were only detected in material harvested in one of the two years. By contrast, consistent associations between the L. perenne homolog (LpHD1) of the rice photoperiod control gene HD1 and flowering time were identified. One SNP, in the immediate upstream region of the LpHD1 coding sequence (C-4443-A), was significant in the linear mixed model. Within-population analysis of variance and tree-scanning analysis confirmed and extended this result to the 2118 polymorphisms in some of the populations. The merits of the tree-scanning method are compared to the single SNP analysis. The potential usefulness of the 4443 SNP in marker-assisted selection is currently being evaluated in test crosses of genotypes from this work with turf-grass varieties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2013705PMC
http://dx.doi.org/10.1534/genetics.107.071522DOI Listing

Publication Analysis

Top Keywords

flowering time
12
analysis variance
12
time water-soluble
8
water-soluble carbohydrate
8
lolium perenne
8
candidate gene
8
analysis
8
linear mixed
8
mixed model
8
populations identified
8

Similar Publications

Genome-wide identification and expression analysis of the WRKY gene family in Mikania micrantha.

BMC Genomics

January 2025

College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan Province, 650224, China.

Background: WRKY transcription factors (TFs) regulate plant responses to environmental stimuli and development, including flowering. Despite extensive research on different species, their role in the invasive plant Mikania micrantha remains to be explored. The aim of this study was to identify and analyze WRKY genes in M.

View Article and Find Full Text PDF

Dienia is a small, pantropical genus of epidendroid Malaxideae orchids. The floral lip is upwardly directed and does not serve as a landing platform for pollinators. This role has been assumed by sepals and/or gynostemium or whole inflorescence.

View Article and Find Full Text PDF

Azaleas (Rhododendron simsii) are popular ornamental woody plants known for their bright colors; however, very limited studies have been reported on the process of flower petal pigmentation. In this study, we found significant differences in the anthocyanin contents of petals from different colored azaleas, and the results of quantitative real-time PCR indicated that the R2R3 MYB genes, RsMYB12, RsMYB90, and RsMYB123, showed significant expression changes during the petal coloration in azalea petals; therefore, we hypothesized that RsMYB12, RsMYB90, and RsMYB123 might involve in the coloring process of azalea petals by regulating anthocyanin synthesis. This work provides insights into the underlying mechanisms of petal pigmentation in R.

View Article and Find Full Text PDF

The collective surface motility and swarming behavior of microbes play a crucial role in the formation of polymicrobial communities, shaping ecosystems as diverse as animal and human microbiota, plant rhizospheres, and various aquatic environments. In the human oral microbiota, T9SS-driven gliding bacteria transport non-motile microbes and bacteriophages as cargo, thereby influencing the spatial organization and structural complexity of these polymicrobial communities. However, the physical rules governing the dispersal of T9SS-driven bacterial swarms are barely understood.

View Article and Find Full Text PDF
Article Synopsis
  • Balanced mating type polymorphisms provide insight into the evolution of sexual reproduction strategies in plants, particularly within the Juglandaceae family (like walnuts and hickories).
  • Researchers have identified two distinct Mendelian inheritance mechanisms linked to ancient DNA polymorphisms that dictate whether flowers develop male or female first, showing a 1:1 genetic ratio.
  • A dominant haplotype associated with female-first flowering is linked to a gene related to trehalose-6-phosphate metabolism, suggesting complex regulation of gene expression and hints at sex chromosome-like evolution in these plants.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!