A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Membrane cytosolic translocation of verotoxin A1 subunit in target cells. | LitMetric

Membrane cytosolic translocation of verotoxin A1 subunit in target cells.

Microbiology (Reading)

Department of Biochemistry, University of Toronto, Canada.

Published: August 2007

In sensitive cells, verotoxin 1 (VT1) utilizes a globotriaosylceramide receptor-dependent retrograde transport pathway from the cell surface to the Golgi/endoplasmic reticulum (ER). The VT1 A subunit (VTA) is an RNA glycanase. Although translocation of VTA from the ER to the cytosol is considered the route for protein synthesis inhibition, cell-based evidence is lacking. A dual-fluorescent-labelled VT1 holotoxin was constructed to simultaneously monitor VTA and VT1 B subunit (VTB) intracellular transport. By confocal microscopy, VTA/VTB subunits remained associated throughout the retrograde transport pathway without cytosolic staining. However, in [125I]VT1-treated cells, the selective cytosolic translocation (4 %) of the activated form of VTA, VTA1, was demonstrated for the first time by monitoring [125I]VTA1 release after plasma membrane permeabilization by streptolysin O (SLO). Lactacystin, a proteasome inhibitor, increased cytosolic VTA1 and enhanced VT1 cytotoxicity. VT1 ER arrival coincided with cytosolic VTA1 detection. Brefeldin A and 16 degrees C, conditions which inhibit VT1 retrograde transport to the Golgi/ER, prevented VTA1 cytosolic translocation; however, these treatments did not completely prevent VT1-induced protein synthesis inhibition. Thus, efficient cytosolic translocation of VTA1 requires transport to the Golgi/ER, but alternative minor escape pathways for protein synthesis inhibition may operate when transport to the Golgi/ER is prevented. Inhibition of protein synthesis was time and dose dependent, and not necessarily a valid index of subsequent cytopathology. Only protein synthesis inhibition following >3 h VT1 exposure correlated with eventual cell cytotoxicity. Extrapolation of translocated cytosolic VTA1 values indicates that about one molecule of translocated VTA1 per cell is sufficient to inhibit protein synthesis and kill a cell.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.2007/006858-0DOI Listing

Publication Analysis

Top Keywords

protein synthesis
24
cytosolic translocation
16
synthesis inhibition
16
retrograde transport
12
cytosolic vta1
12
transport golgi/er
12
vt1
8
transport pathway
8
vt1 subunit
8
golgi/er prevented
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!