Analysis of programmed cell death in mouse fetal oocytes.

Reproduction

Section of Histology and Embryology, Department of Public Health and Cell Biology, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.

Published: August 2007

We report a short-term culture system that allows to define novel characteristic of programmed cell death (PCD) in fetal oocytes and to underscore new aspects of this process. Mouse fetal oocytes cultured in conditions allowing meiotic prophase I progression underwent apoptotic degeneration waves as revealed by TUNEL staining. TEM observations revealed recurrent atypical apoptotic morphologies characterized by the absence of chromatin margination and nuclear fragmentation; oocytes with autophagic and necrotic features were also observed. Further characterization of oocyte death evidenced DNA ladder, Annexin V binding, PARP cleavage, and usually caspase activation (namely caspase-2). In the aim to modulate the oocyte death process, we found that the addition to the culture medium of the pan-caspase inhibitors Z-VAD or caspase-2-specific inhibitor Z-VDVAD resulted in a partial and transient prevention of this process. Oocyte death was significantly reduced by the antioxidant agent NAC and partly prevented by KL and IGF-I growth factors. Finally, oocyte apoptosis was reduced by calpain inhibitor I and increased by rapamycin after prolonged culture. These results support the notion that fetal oocytes undergo degeneration mostly by apoptosis. This process is, however, often morphologically atypical and encompasses other forms of cell death including caspase-independent apoptosis and autophagia. The observation that oocyte death occurs mainly at certain stages of meiosis and can only be attenuated by typical anti-apoptotic treatments favors the notion that it is controlled at least in part by stage-specific oocyte-autonomous meiotic checkpoints and when activated is little amenable to inhibition being the oocyte able to switch back and forth among different death pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1530/REP-07-0141DOI Listing

Publication Analysis

Top Keywords

fetal oocytes
16
oocyte death
16
cell death
12
programmed cell
8
death
8
mouse fetal
8
oocyte
6
oocytes
5
analysis programmed
4
death mouse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!