Density functional theory (DFT) calculations on the chemoselective epoxidation versus hydroxylation reactions of propene by oxoiron porphyrin models mimicking the active sites of catalase, cytochrome P450 (P450) and horseradish peroxidase Compound I (CpdI) are presented. The catalase reactions are concerted and proceed via two-state reactivity patterns on competing doublet and quartet spin state surfaces, but the lowest barrier is the one leading to epoxide products on the doublet spin surface. The results are compared with earlier DFT studies of models of cytochrome P450, horseradish peroxide (HRP), taurine/alpha-ketoglutarate dioxygenase and some synthetic oxoiron catalysts. The catalase barriers are midway in between those obtained for HRP and P450 models, so that tyrosinate ligated heme systems should be able to catalyze C-H hydroxylation and C=C epoxidation reactions. We show that for heme systems the barrier height of epoxidation linearly correlates with the electron affinity of Compound I as expected from the electron transfer mechanism of the rate determining step. Our studies show that the axial ligand does not influence the chemoselectivity of a reaction but that it does regulate the barrier heights and rate constants. Finally, we estimated the effect of the axial ligand on the oxoiron group and derived that it contributes from a field effect due to the charge of the ligand and a quantum mechanical effect as a result of orbital mixing. In catalase, the major component is the field effect, while the quantum mechanical effect is negligible. This is in contrast to P450 CpdI, where both effects are of similar order of magnitude.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2007.06.022 | DOI Listing |
J Trace Elem Med Biol
January 2025
Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India. Electronic address:
[CuL(tmen)] is a sequence of four ternary mononuclear Schiff base copper(II) complexes that are derived from L-valine, suitable 5'-substituted-2'-hydroxyacetophenones (where the substituents are -Cl for L, -Me for L, -OMe for L, and -H for L), and tmen (where tmen-N,N,N',N' tetramethyl ethylenediamine). Without isolating the Schiff base ligand or producing any other intermediate products, all of the complexes were synthesised. These compounds were identified using elemental analysis, molar conductance, UV-Vis, FTIR, EPR, VSM-RT, and CD spectra.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic; Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, Olomouc 783 71, Czech Republic. Electronic address:
Platinum(IV) compounds possess distinct properties that set them apart from platinum(II) compounds. Often designed as prodrugs, they are reduced within cancer cells to their active platinum(II) form, enabling their cytotoxic effects. Their versatility also lies in their ability to be functionalized and conjugated with bioactive molecules to enhance cancer cell targeting.
View Article and Find Full Text PDFDalton Trans
January 2025
Czech Academy of Sciences, J. Heyrovsky Institute of Physical Chemistry, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic.
Copper isotopes and their complexes are intensively studied due to their high potential for applications in radiodiagnosis and radiotherapy. Here, we study the Cu complex of 1,8-bis(2-hydroxybenzyl)-cyclam (HL), which forms an unexpected variety of isomers differing in the mutual orientation of the substituents on the cyclam nitrogen atoms, the protonation of the phenolate pendant, and the ligand denticity. The interconversion of the isomers is rather slow, which made the isolation, identification and investigation of some of the individual species possible.
View Article and Find Full Text PDFChemistry
January 2025
Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
Unprecedented (2E,4E,6Z,8Z)-nona-2,4,6,8-tetraenoate derivatives highly substituted by aryl groups have been synthesized by the reaction of rhodium complexes having aryl-substituted hexa-1,3,5-trienyl ligands with acrylates. These compounds have potential axial chirality, and their enantiomers are isolable by the chiral HPLC technique. Although the racemization barrier of isolated enantiomers was not high, it was found that a cyclic dimer synthesized by head-to-tail transesterification of a modified analog has quite a stable axial chirality even at a high temperature.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Nantes Université, CNRS, CEISAM UMR 6230, Nantes, France.
Carbonyl complexes of metals with an α-diimine ligand exhibit both emission and ligand-selective photodissociation from MLCT states. Studying this photodissociative mechanism is challenging for experimental approaches due to an ultrafast femtosecond timescale and spectral overlap of multiple photoproducts. The photochemistry of a prototypical system is investigated with non-adiabatic dynamic simulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!