Iterative tandem catalysis of secondary diols and diesters to chiral polyesters.

Chemistry

Department of Chemical Engineering and Chemistry, Laboratory of Macromolecular and Organic Chemistry, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

Published: November 2007

The well-known dynamic kinetic resolution of secondary alcohols and esters was extended to secondary diols and diesters to afford chiral polyesters. This process is an example of iterative tandem catalysis (ITC), a polymerization method where the concurrent action of two fundamentally different catalysts is required to achieve chain growth. In order to procure chiral polyesters of high enantiomeric excess value (ee) and good molecular weight, the catalysts employed need to be complementary and compatible during the polymerization reaction. We here show that Shvo's catalyst and Novozym 435 fulfil these requirements. The optimal polymerization conditions of 1,1'-(1,3-phenylene) diethanol (1,3-diol) and diisopropyl adipate required 2 mol% Shvo's catalyst and 12 mg Novozym 435 per mmol alcohol group in the presence of 0.5 M 2,4-dimethyl-3-pentanol as the hydrogen donor. With these conditions, chiral polyesters were obtained with peak molecular weights up to 15 kDa, an ee value up to 99% and with 1-3 % ketone end groups. Also with the structural isomer, 1,4-diol, a chiral polyester was obtained, albeit with lower molecular weight (8.3 kDa) and slightly lower ee (94%). Aliphatic secondary diols also resulted in enantio-enriched polymers but at most an ee of 46 % was obtained with molecular weights in the range of 3.3-3.7 kDa. This low ee originates from the intrinsic low enantioselectivity of Novozym 435 for this type of secondary aliphatic diols. The results presented here show that ITC can be applied to procure chiral polyesters with good molecular weight and high ee from optically inactive AA-BB type monomers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200700818DOI Listing

Publication Analysis

Top Keywords

chiral polyesters
20
secondary diols
12
molecular weight
12
novozym 435
12
iterative tandem
8
tandem catalysis
8
diols diesters
8
procure chiral
8
good molecular
8
shvo's catalyst
8

Similar Publications

Monomer Design Enables Mechanistic Mapping of Anionic Ring-Opening Polymerization of Aromatic Thionolactones.

Angew Chem Int Ed Engl

January 2025

University of Science and Technology of China, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, and Polymer Science and Engineering, 96 Jinzhai Road, 230026, Hefei, CHINA.

Degradable chalcogenide polyesters, e.g., polythioesters (PTEs), typically exhibit improved thermal, mechanical, and optical properties.

View Article and Find Full Text PDF

Building on our previous studies, which have demonstrated that homochiral propagating species-(*,*)-[MeGa(-OCH(Me)COR)]-were crucial for the heteroselectivity of [MeGa(-OCH(Me)COMe)] in the ring-opening polymerization (ROP) of racemic lactide (-LA), we have investigated the effect of alkyl groups on the structure and catalytic properties of dialkylgallium alkoxides in the ROP of -LA. Therefore, we have isolated and characterized the -[RGa(-OCH(Me)COMe] (R = Et (), Pr () and -[RGa(-OCH(Me)CHN] (R = Et (), Pr ()) complexes, to demonstrate the effect of alkyl groups on the chiral recognition induced the formation of the respective homochiaral species-(*,*)-[RGa(-OCH(Me)COMe)] and (*,*)-[RGa(-OCH(Me)CHN]. Moreover, we have investigated the structure of (,)-[RGa(-OCH(Me)COMe] (R = Et ((,)-, R = Pr ((,)-,) and their catalytic activity in the ROP of -LA.

View Article and Find Full Text PDF

Catalyst Improved Stereoselectivity and Regioselectivity Control to Access Completely Alternating Poly(lactic-co-glycolic acid) with Enhanced Properties.

Angew Chem Int Ed Engl

December 2024

Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.

The poly(lactic-co-glycolic acid) (PLGA) with completely alternating sequence has attracted growing attention as an ideal candidate in controlled drug delivery. However, the approach to completely alternating PLGA remains a challenge. Herein, we report the successful synthesis of completely alternating PLGA via highly regioselective and stereoselective ring-opening polymerization.

View Article and Find Full Text PDF

Solubility-Equilibrium-Assisted Kinetic Resolution Polymerization toward Isotactic Polyesters Containing Axial Chirality.

J Am Chem Soc

January 2025

National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu 610064, P. R. China.

High-level control over polymer stereochemistry leverages the fine-tuning of material properties, but it is still a formidable challenge in synthetic polymer chemistry. Herein we prepared a new class of salph yttrium catalysts bearing axially chiral binaphthyl moieties for axially stereocontrolled polymerization of -Me-DBO. ()-bearing bulkier binaphthyl units accomplished moderate isoselectivity via kinetic resolution polymerization, affording P(Me-BDO) with a of up to 0.

View Article and Find Full Text PDF

Enantiomorphic Site-Assisted Chain End Control Stereospecific Alternating Copolymerization of Chiral Cyclic Diesters.

Angew Chem Int Ed Engl

October 2024

State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.

Stereospecific alternating copolymerization of different chiral cyclic esters is one feasible approach to enrich the structural diversity of copolyesters and tailor their properties. However, dramatically different reactivities of different cyclic esters let a perfectly stereospecific alternating polymerization of these cyclic esters be a challenge, thus the catalyst is required to balance their reactivities. Herein, a remarkable enantiomorphic site effect on chain end control was discovered and successfully utilized to balance the reactivities of highly reactive S, S-lactide (S, S-LA) and low reactive R, R-ethylglycolide (R, R-EG)/R, R-propylglycolide (R, R-PG) during their heterospecific alternating copolymerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!