The effect of an external salt (AcONa) on the kinetics of adsorption and structure formation inside the adsorption layers (ALs) of chitosan (Ch) and dodecyl chitosan (C12Ch) as well as on the frequency dependence of the complex dilational elasticity modulus of these layers has been studied. The complex dilational elasticity modulus of adsorption layers of polymers has been measured on the drop tensiometer (Tracker, IT Concept, France) upon applying a small sinusoidal variation of the drop area with a given frequency, omega, in the range from 10(-2) to 0.63 rad/s and recording the variation of the surface pressure. It has been found that, in the absence of the salt, the dilational storage modulus, E'(omega), of ALs of both Ch and C12Ch is lower with regard to the loss modulus, E' '(omega), in the whole range of frequencies used, testifying for the liquidlike rheological behavior of these layers. With an increase of the salt concentration up to CAcONa > 0.1 M, the ALs become solidlike, as shown when E'(omega) > E' '(omega). Consequently, the characteristic frequency, omega c, corresponding to the intercept between the E'(omega) and E' '(omega) curves, gradually varies from omega c > 1 rad/s to omega c < 0.01 rad/s when the salt concentration is increased from zero to CAcONa = 1 M. Hydrophobically modified C12Ch, having long grafted alkyl chains, exhibited a higher sensitivity to the presence of salt than Ch: the former solidifies more readily and at lower salt concentrations than the latter. It has been found that the experimental E'(omega) and E' '(omega) curves exhibit two characteristic relaxation frequencies, omega 01 approximately 1 rad/s and omega 02 approximately 10(-3)-10(-2) rad/s, whose physical meaning and values were related to the structure of the ALs and to the competitive contribution of electrostatic and hydrophobic interactions between amino and nonpolar groups of Ch and C12Ch to the formation of a gel-like network inside the polymeric film at the interface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp0718653 | DOI Listing |
Sci Bull (Beijing)
January 2025
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Macao 999078, China; Institute of Organic Optoelectronics (IOO), Jiangsu Industrial Technology Research Institute (JITRI), Suzhou 215200, China. Electronic address:
High-quality quantum dots (QDs) possess superior electroluminescent efficiencies and ultra-narrow emission linewidths are essential for realizing ultra-high definition QD light-emitting diodes (QLEDs). However, the synthesis of such QDs remains challenging. In this study, we present a facile high-temperature successive ion layer adsorption and reaction (HT-SILAR) strategy for the growth of precisely tailored ZnCdSe/ZnSe shells, and the consequent production of high-quality, large-particle, alloyed red CdZnSe/ZnCdSe/ZnSe/ZnS/CdZnS QDs.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA.
Focused ultrasound has advantages as an external stimulus for drug delivery as it is non-invasive, has high precision and can penetrate deep into tissues. Here, we report a gold-plated alginate (ALG) hydrogel system that retains highly water-soluble small-molecule fluorescein for sharp off/on release after ultrasound exposure. The ALG is crosslinked into beads with calcium chloride and layered with a polycation to adjust the surface charge for the adsorption of catalytic platinum nanoparticles (Pt NPs).
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute of Physics, University of Tartu, EE-50411 Tartu, Estonia.
Low-power gas sensors that can be used in IoT (Internet of Things) systems, consumer devices, and point-of-care devices will enable new applications in environmental monitoring and health protection. We fabricated a monolithic chemiresistive gas sensor by integrating a micro-lightplate with a 2D sensing material composed of single-layer graphene and monolayer-thick TiO. Applying ultraviolet (380 nm) light with quantum energy above the TiO bandgap effectively enhanced the sensor responses.
View Article and Find Full Text PDFMolecules
January 2025
College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
To address cadmium pollution in China's cultivated land, chitosan, inorganic and organic selenium were used to modify rice husk charcoal for cadmium inhibition. Basic physicochemical properties of rice husk carbons were characterized (BET, FTIR, XRD, Zeta potential). Kinetic and isothermal adsorption experiments studied the adsorption of Cd by modified biochar under different pH and dosages.
View Article and Find Full Text PDFMolecules
January 2025
Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
In recent years, the anti-corrosive properties of natural extracts as environmentally friendly inhibitors have gained considerable interest. This study evaluates the potential of ( L.) essential oil (), collected from Salé, Morocco, as a corrosion inhibitor for mild steel in 1 M HCl medium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!